Skip to content

Ikuyu/bloomz.cpp

 
 

Repository files navigation

bloomz.cpp

Inference of HuggingFace's BLOOM-like models in pure C/C++.

The repo was built on top of the amazing llama.cpp repo by @ggerganov, to support BLOOM models. It supports all models that can be loaded using BloomForCausalLM.from_pretrained().

bloomz-7b1

Demo

bloomz-7b1

Usage

First, you need to clone the repo and build it:

git clone https://github.com/NouamaneTazi/bloomz.cpp
cd bloomz.cpp
make

Then, you can convert any BLOOM model from the Hub to the ggml format.

# install required libraries
python3 -m pip install torch numpy transformers accelerate

# download and convert the 7B1 model to ggml FP16 format
python3 convert-hf-to-ggml.py bigscience/bloomz-7b1 ./models 
# Note: you can add --use-f32 to convert to FP32 instead of FP16

Optionally, you can quantize the model to 4-bits.

./quantize ./models/ggml-model-bloomz-7b1-f16.bin ./models/ggml-model-bloomz-7b1-f16-q4_0.bin 2

Finally, you can run the inference.

./main -m ./models/ggml-model-bloomz-7b1-f16-q4_0.bin -t 8 -n 128

Your output should look like this:

make && ./main -m models/ggml-model-bloomz-7b1-f16-q4_0.bin  -p 'Translate "Hi, how are you?" in French:' -t 8 -n 256

I llama.cpp build info: 
I UNAME_S:  Darwin
I UNAME_P:  arm
I UNAME_M:  arm64
I CFLAGS:   -I.              -O3 -DNDEBUG -std=c11   -fPIC -pthread -DGGML_USE_ACCELERATE
I CXXFLAGS: -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC -pthread
I LDFLAGS:   -framework Accelerate
I CC:       Apple clang version 13.1.6 (clang-1316.0.21.2.5)
I CXX:      Apple clang version 13.1.6 (clang-1316.0.21.2.5)

make: Nothing to be done for `default'.
main: seed = 1678899845
llama_model_load: loading model from 'models/ggml-model-bloomz-7b1-f16-q4_0.bin' - please wait ...
llama_model_load: n_vocab = 250880
llama_model_load: n_ctx   = 512
llama_model_load: n_embd  = 4096
llama_model_load: n_mult  = 1
llama_model_load: n_head  = 32
llama_model_load: n_layer = 30
llama_model_load: f16     = 2
llama_model_load: n_ff    = 16384
llama_model_load: n_parts = 1
llama_model_load: ggml ctx size = 5312.64 MB
llama_model_load: memory_size =   480.00 MB, n_mem = 15360
llama_model_load: loading model part 1/1 from 'models/ggml-model-bloomz-7b1-f16-q4_0.bin'
llama_model_load: ............................................. done
llama_model_load: model size =  4831.16 MB / num tensors = 366

main: prompt: 'Translate "Hi, how are you?" in French:'
main: number of tokens in prompt = 11
153772 -> 'Translate'
 17959 -> ' "H'
    76 -> 'i'
 98257 -> ', '
 20263 -> 'how'
  1306 -> ' are'
  1152 -> ' you'
  2040 -> '?'
     5 -> '"'
   361 -> ' in'
196427 -> ' French:'

sampling parameters: temp = 0.800000, top_k = 40, top_p = 0.950000, repeat_last_n = 64, repeat_penalty = 1.300000


Translate "Hi, how are you?" in French: Bonjour, comment ça va?</s> [end of text]


main: mem per token = 24017564 bytes
main:     load time =  3092.29 ms
main:   sample time =     2.40 ms
main:  predict time =  1003.04 ms / 59.00 ms per token
main:    total time =  5307.23 ms

Advanced usage

Here's a list of the available options:

usage: ./main [options]

options:
  -h, --help            show this help message and exit
  -s SEED, --seed SEED  RNG seed (default: -1)
  -t N, --threads N     number of threads to use during computation (default: 4)
  -p PROMPT, --prompt PROMPT
                        prompt to start generation with (default: random)
  -n N, --n_predict N   number of tokens to predict (default: 128)
  --top_k N             top-k sampling (default: 40)
  --top_p N             top-p sampling (default: 0.9)
  --repeat_last_n N     last n tokens to consider for penalize (default: 64)
  --repeat_penalty N    penalize repeat sequence of tokens (default: 1.3)
  --temp N              temperature (default: 0.8)
  -b N, --batch_size N  batch size for prompt processing (default: 8)
  -m FNAME, --model FNAME
                        model path (default: models/ggml-model-bloomz-7b1-f16-q4_0.bin)

Memory usage

Model Disk Mem
bloomz-7b1-f16-q4_0 4.7 GB 5.3 GB

iOS App

The repo includes a proof-of-concept iOS app in the Bloomer directory. You need to provide the converted model weights, placing a file called ggml-model-bloomz-560m-f16.bin inside that folder. This is what it looks like on an iPhone:

bloom-ios-screenshot

Known issues and limitations:

  • No feedback during generation, the full generated text is displayed at once upon termination.
  • The model is loaded from disk every time you submit a new string for completion.
  • Performance is much worse when testing on the simulator than when running the native binary. There could be some compiler options that might be impacting performance.

About

C++ implementation for BLOOM

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C 83.7%
  • C++ 14.8%
  • Other 1.5%