Skip to content

Requirements for opening a Nursery or Trial in the BMS

jeenybeen edited this page Jul 23, 2016 · 4 revisions

This document is intended to support Data Managers in setting data correctly in the database for the BMS to access in the Nursery and Trial Managers

Opening an Existing Nursery

The Nursery and Trial records in the BMS reside in the project table as a collection of datasets. By default, when a Study is created, 3 datasets are created

  • Study Details (the main dataset)
  • Trial Dataset (also referred to as Summary Dataset and Trial Environment Dataset)
  • Plotdata Dataset (also referred to as Measurement Dataset)

These records should have the program UUID that refers to the program they belong to, found in the workbench_project.program_uuid field. The program_uuid field can be the following :

The program_uuid cross referenced to workbench_project.program_uuid Behaviour
Valid UUID string Appears in Folder Tree, is accessible as editable
Empty string or incorrect string Will not appear in Folder Tree
NULL Appears in Folder Tree, opens as Read-Only

Opening a Nursery/Trial as 3 Datasets

Each dataset is most efficiently identified by a suffix to the Dataset name. The system looks for :

  • Study Dataset : identified always by Id
  • Trial Dataset : suffix "–ENVIRONMENT"
  • Measurement Dataset : suffix "-PLOTDATA"

If these suffices are not found, then the BMS will travel to DB to fetch the Dataset Type, and will look for the following values

  • Trial Dataset : cvterm_id = 10080
  • Measurement Dataset : cvterm_id = 10090

*** means dataset is also recognised as 10070, but not in the opening of a Nursery/Trial for edit

If possible, using the name identification successfully will improve performance. The system is, however OK to search for dataset type in the projectprop table.

If neither of these methods are successful, then the BMS will return an exception to the user.

How Datasets Are Created

(we can only imagine this is what the Software expects in return)

The datasets are essentially group of variables prepared in such a way for analysis

You can see the screenshot below describes which variables get stored in the DB and which dataset these variables are housed.

variable.png

*** note and apologies that CT_C is noted here as a Condition, when it is in fact a Trait. Example only.

Here we have examples of all three datasets that the Nursery Manager stores – you will be able to see the added variables and the default variables in the dataset defined by the projectprop table for a particular project.

Example Datasets

Projects

project.png

Study (basic) Dataset

See in highlight that values for this dataset are stored directly in the projectprop table

projectprop_id project_id type_id value rank
26197 25035 1060 Study type - assigned (type) 1
26198 25035 1070 8070 1
26199 25035 8070 10000 1
26196 25035 1805 STUDY_TYPE 1
26166 25035 1805 STUDY_BM_CODE 2
26168 25035 1070 8251 2
26167 25035 1060 Breeding method applied to all plots in a study (CODE) 2
26200 25035 8251 ACL 2
26170 25035 1060 Study - assigned (DBCV) 3
26169 25035 1805 STUDY_NAME 3
26201 25035 8005 HandsonTableTest 3
26171 25035 1070 8005 3
26172 25035 1805 STUDY_TITLE 4
26174 25035 1070 8007 4
26173 25035 1060 Study title - assigned (text) 4
26202 25035 8007 Testing JS table 4
26203 25035 8050 20151031 5
26177 25035 1070 8050 5
26176 25035 1060 Start date - assigned (date) 5
26175 25035 1805 START_DATE 5
26204 25035 8030 Testing The Objective 6
26179 25035 1060 Objective - described (text) 6
26178 25035 1805 STUDY_OBJECTIVE 6
26180 25035 1070 8030 6
26205 25035 8060 20160301 7
26181 25035 1805 END_DATE 7
26183 25035 1070 8060 7
26182 25035 1060 End date - assigned (date) 7
26206 25035 8020 52 8
26184 25035 1805 Study_UID 8
26186 25035 1070 8020 8
26185 25035 1060 ID of the user entering the study data - assigned (DBID) 8
26188 25035 1060 Date the study was last updated - assigned (YYYYMMDD) 9
26189 25035 1070 8009 9
26187 25035 1805 STUDY_UPDATE 9
26207 25035 8009 20151104 9
26192 25035 1070 8256 10
26190 25035 1805 STUDY_BMETH 10
26208 25035 8256 Collection line 10
26191 25035 1060 Breeding method applied to all plots (DBCV) 10
26194 25035 1060 TRIAL_INSTANCE 11
26195 25035 1070 8170 11
26193 25035 1806 TRIAL_INSTANCE 11
26396 25035 1070 8080 12
26397 25035 8080 CleverPlants 12
26395 25035 1060 Study institute - conducted (DBCV) 12
26394 25035 1805 STUDY_INSTITUTE 12
26400 25035 1070 8115 13
26401 25035 8115 Naymesh 13
26398 25035 1805 PI_NAME_TEXT 13
26399 25035 1060 Principal investigator - assigned (Name) 13

Trial (environment) Dataset

Values for this dataset are stored in the geolocationprop table

*** note and apologies that CT_C is noted here as a Condition, when it is in fact a Trait. Example only

projectprop_id project_id type_id value rank
26216 25036 1060 Dataset name 1
26217 25036 1070 8150 1
26215 25036 1805 DATASET_NAME 1
26219 25036 1060 Dataset title 2
26220 25036 1070 8155 2
26218 25036 1805 DATASET_TITLE 2
26222 25036 1060 Dataset type 3
26223 25036 1070 8160 3
26221 25036 1805 DATASET_TYPE 3
26224 25036 8160 10080 3
26210 25036 1060 Experimental design - assigned (type) 4
26211 25036 1070 8135 4
26209 25036 1806 EXPT_DESIGN 4
26213 25036 1060 TRIAL_INSTANCE 5
26214 25036 1070 8170 5
26212 25036 1806 TRIAL_INSTANCE 5
26406 25036 1060 Measured in several rows simultaneously to allow a comparison. Thermal images will be taken using an Infrared Camera placed several meters above the canopy. 7
26407 25036 1070 20397 7
26405 25036 1808 CT_C 7
26409 25036 1060 Soil acidity - ph meter (pH) 8
26410 25036 1070 8270 8
26408 25036 1808 SITE_SOIL_PH 8

Measurement (plotdata) Dataset

projectprop_id project_id type_id value rank
26244 25037 1060 Dataset name 1
26245 25037 1070 8150 1
26243 25037 1805 DATASET_NAME 1
26247 25037 1060 Dataset title 2
26248 25037 1070 8155 2
26246 25037 1805 DATASET_TITLE 2
26250 25037 1060 Dataset type 3
26251 25037 1070 8160 3
26249 25037 1805 DATASET_TYPE 3
26252 25037 8160 10090 3
26226 25037 1060 TRIAL_INSTANCE 4
26227 25037 1070 8170 4
26225 25037 1806 TRIAL_INSTANCE 4
26229 25037 1060 Germplasm identifier - assigned (DBID) 5
26230 25037 1070 8240 5
26228 25037 1804 GID 5
26232 25037 1060 Germplasm identifier - assigned (DBCV) 6
26233 25037 1070 8250 6
26231 25037 1804 DESIGNATION 6
26235 25037 1060 Germplasm entry - enumerated (number) 7
26236 25037 1070 8230 7
26234 25037 1804 ENTRY_NO 7
26238 25037 1060 Field plot - enumerated (number) 8
26239 25037 1070 8200 8
26237 25037 1810 PLOT_NO 8
26241 25037 1060 The pedigree string of the germplasm 9
26242 25037 1070 8377 9
26240 25037 1804 CROSS 9
26254 25037 1060 Weight of 100 grains randomly selected from the total grains. 10
26255 25037 1070 51496 10
26253 25037 1808 GW100_g 10
26257 25037 1060 Height between the base of a plant to the insertion of the first tassel branch of the same plant. 11
26258 25037 1070 20343 11
26256 25037 1808 PH_cm 11
26260 25037 1060 Ears harvested - EarsHvst counting (ears/plot) 12
26261 25037 1070 51497 12
26259 25037 1808 EarsHvst_ears_plot 12
26412 25037 1060 Ears Selected 13
26413 25037 1070 20364 13
26411 25037 1808 nEarsSel 13

Open Study

  • getStudyDetails – main dataset for a Nursery/Trial (contains trial and measurement dataset ids)
  • get trialDataSet – get Study by Id
  • get measurementDataset – get Study by id
  • getExperiments – from experiment_project
  • getTrial Instances – from geolocation
  • getLocationInfo – from geolocationprop
  • BreedingMethods – non generative

Study

This is the main query to fetch Study information – you can see the tables we are joining to get this information. This query returns data for the main "Basic Details" section of the Nursery and Trial Manager. You will see we hit Locations and experiments as well but this information is not used and should be trimmed from the query.

StringBuilder sqlString = **new** StringBuilder()

    `.append("SELECT DISTINCT p.name AS name, p.description AS title, ppObjective.value AS objective, ppStartDate.value AS startDate,`

ppEndDate.value AS endDate, ppPI.value AS piName, gpSiteName.value AS siteName, p.project\_id AS id, ppPIid.value AS piId, gpSiteId.value AS siteId, ppFolder.object\_project\_id AS folderId, p.program\_uuid AS programUUID FROM project p ")

INNER JOIN projectprop ppNursery ON p.project\_id = ppNursery.project\_id

AND ppNursery.type\_id = ")

    `.append(TermId. **STUDY\_TYPE**.getId())`

    `.append(" ")`

    `.append("AND ppNursery.value = ")`

    `.append(studyType.getId())`

    `.append(" ")`

    `.append("INNER JOIN project\_relationship ppFolder ON p.project\_id = ppFolder.subject\_project\_id ")`

    `.append("   LEFT JOIN projectprop ppObjective ON p.project\_id = ppObjective.project\_id ")`

    `.append("AND ppObjective.type\_id =  ")`

    `.append(TermId. **STUDY\_OBJECTIVE**.getId())`

    `.append(" ")`

    `.append("   LEFT JOIN projectprop ppStartDate ON p.project\_id = ppStartDate.project\_id ")`

    `.append("AND ppStartDate.type\_id =  ")`

    `.append(TermId. **START\_DATE**.getId())`

    `.append(" ")`

    `.append("   LEFT JOIN projectprop ppEndDate ON p.project\_id = ppEndDate.project\_id ")`

.append(" AND ppEndDate.type\_id = ")

    `.append(TermId. **END\_DATE**.getId())`

    `.append(" ")`

    `.append("   LEFT JOIN projectprop ppPI ON p.project\_id = ppPI.project\_id ")                .append("                   AND ppPI.type\_id =  ")`

    `.append(TermId. **PI\_NAME**.getId())`

    `.append(" ")`

    `.append("   LEFT JOIN projectprop ppPIid ON p.project\_id = ppPIid.project\_id ")`

    `.append("                   AND ppPIid.type\_id =  ")`

    `.append(TermId. **PI\_ID**.getId())`

    `.append(" ")`

    `.append("   LEFT JOIN nd\_experiment\_project ep ON p.project\_id = ep.project\_id ")`

    `.append("       LEFT JOIN nd\_experiment e ON ep.nd\_experiment\_id = e.nd\_experiment\_id ")`

    `.append("       LEFT JOIN nd\_geolocationprop gpSiteName ON e.nd\_geolocation\_id = gpSiteName.nd\_geolocation\_id ")`

.append(" AND gpSiteName.type\_id = ").append(TermId. **TRIAL\_LOCATION**.getId()).append(" ")

    `.append("       LEFT JOIN nd\_geolocationprop gpSiteId ON e.nd\_geolocation\_id = gpSiteId.nd\_geolocation\_id ")`

    `.append("           AND gpSiteId.type\_id =  ").append(TermId. **LOCATION\_ID**.getId()).append(" ")`

    `.append("  WHERE p.project\_id = ").append(studyId);`

Trial Dataset

This is the dataset that holds the Managerial and Environmental Conditions for a Nursery. We pick this up from the database using our generic 'getDataset' machinery, and passing the dataset ID. It is essentially the same as fetching any study from the DB.

Hibernate:

`/\* load org.generationcp.middleware.pojos.dms.DmsProject \*/ select`

    `dmsproject0\_.project\_id as project1\_852\_0\_,`

    `dmsproject0\_.description as descript2\_852\_0\_,`

    `dmsproject0\_.name as name852\_0\_,`

    `dmsproject0\_.program\_uuid as program4\_852\_0\_`

`from`

    `project dmsproject0\_`

`where`

    `dmsproject0\_.project\_id=?`

Hibernate:

`/\* load one-to-many org.generationcp.middleware.pojos.dms.DmsProject.relatedTos \*/ select`

    `relatedtos0\_.subject\_project\_id as subject4\_852\_2\_,`

    `relatedtos0\_.project\_relationship\_id as project1\_2\_,`

    `relatedtos0\_.project\_relationship\_id as project1\_862\_1\_,`

    `relatedtos0\_.object\_project\_id as object3\_862\_1\_,`

    `relatedtos0\_.subject\_project\_id as subject4\_862\_1\_,`

    `relatedtos0\_.type\_id as type2\_862\_1\_,`

    `dmsproject1\_.project\_id as project1\_852\_0\_,`

    `dmsproject1\_.description as descript2\_852\_0\_,`

    `dmsproject1\_.name as name852\_0\_,`

    `dmsproject1\_.program\_uuid as program4\_852\_0\_`

`___from___`

    `___project\_relationship relatedtos0\____`

`___inner join___`

    `___project dmsproject1\____`

        `___on relatedtos0\_.object\_project\_id=dmsproject1\_.project\_id___`

`___where___`

    `___relatedtos0\_.subject\_project\_id=?___`

Hibernate:

`/\* load one-to-many org.generationcp.middleware.pojos.dms.DmsProject.properties \*/ select`

    `properties0\_.project\_id as project5\_852\_1\_,`

    `properties0\_.projectprop\_id as projectp1\_1\_,`

    `properties0\_.projectprop\_id as projectp1\_853\_0\_,`

    `properties0\_.project\_id as project5\_853\_0\_,`

    `properties0\_.rank as rank853\_0\_,`

    `properties0\_.type\_id as type3\_853\_0\_,`

    `properties0\_.value as value853\_0\_`

`from`

    `projectprop properties0\_`

`where`

    `properties0\_.project\_id=?`

Hibernate:

`/\* dynamic native SQL query \*/ SELECT`

    `DISTINCT e.nd\_geolocation\_id`

`FROM`

    `nd\_experiment e,`

    `nd\_experiment\_project ep`

`WHERE`

    `e.nd\_experiment\_id = ep.nd\_experiment\_id`

    `and ep.project\_id = 25036`

Experiments (Measurements)

StringBuilder queryString = **new** StringBuilder();

queryString.append("select distinct ep from ExperimentProject as ep ");

queryString.append("inner join ep.experiment as exp ");

queryString.append("left outer join exp.properties as plot with plot.typeId IN (8200,8380) ");

queryString.append("left outer join exp.properties as rep with rep.typeId = 8210 ");

queryString.append("left outer join exp.experimentStocks as es ");

queryString.append("left outer join es.stock as st ");

queryString.append("where ep.projectId =:p\_id and ep.experiment.typeId in (:type\_ids) ");

queryString.append("order by (ep.experiment.geoLocation.description \* 1) ASC, ");

queryString.append("(plot.value \* 1) ASC, ");

queryString.append("(rep.value \* 1) ASC, ");

queryString.append("(st.uniqueName \* 1) ASC, ");

queryString.append("ep.experiment.ndExperimentId ASC");

Trial Instances for a study

String sql =

"SELECT DISTINCT e.nd\_geolocation\_id " + " FROM nd\_experiment e "

+ " INNER JOIN nd\_experiment\_project ep ON ep.nd\_experiment\_id = e.nd\_experiment\_id "

+ " INNER JOIN project\_relationship pr ON pr.type\_id = " + TermId. **BELONGS\_TO\_STUDY**.getId()

+ " AND pr.object\_project\_id = " + studyId + " AND pr.subject\_project\_id = ep.project\_id ";

Assembly

Once all these data are fetched, the BMS builds the following and assembles it into a data structure that carries data to the screen

workbook.setStudyDetails(studyDetails); - study **details** query

workbook.setFactors(factors); - from whole study FOO

workbook.setVariates(variates); - from whole study FOO

workbook.setConditions(conditions); - from whole Study

workbook.setConstants(constants); - from whole study

workbook.setObservations(observations); - from

workbook.setTreatmentFactors(treatmentFactors); - from

workbook.setExperimentalDesignVariables(expDesignVariables); - from Experiment Query

workbook.setTrialObservations(trialObservations); - from Experiment Query

Clone this wiki locally