Skip to content

It contains interview preparation notes provided by iNeuron

Notifications You must be signed in to change notification settings

IoannisDem/Quick-Notes-for-ML-DS

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Quick-Notes-for-ML-DS

It contains interview preparation notes provided by iNeuron, article links.

Important Concepts:

  1. What is the difference between filter, wrapper, and embedded methods for feature selection? Answer
  2. 120 Questions. Answer
  3. Probability vs. Likelihood. Answer My Fav.: StatQuest
  4. Generative and discriminative. Answer
  5. ML concepts and code. Answer
  6. EM - Expectation-Maximization. Answer
  7. Random Forest. Answer
  8. Regression - Type of change. Answer
  9. Pearson vs Spearman vs Kendall: Stackexchange
  10. Gain and Lift Charts. listendata
  11. Statistical Hypothesis tests in Python. Jason
  12. Machine learning system design. Link
  13. A/B Testing. Link
  14. Product Questions. Quora
  15. Random Forest to Layman. Quora
  16. ANOVA, ANCOVA etc. Link
  17. ML System Design Template Link

Useful blogs to refer:

  1. Martin Henze (Heads or Tails). Blog
  2. Python Snippets. Link
  3. PandasVault. Link
  4. Python Engineer. Twitter
  5. Paired vs Unpaired data: link
  6. Data informed product building: Link
  7. Metric: Link, Link,SQL
  8. Into to Linear Algebra: Link
  9. IMS data sources: Link
  10. Predictive model performance check: ListenData
  11. Case Study: Link
  12. Collection of cases: Link, GAME
  13. Gradient Boosting: Link
  14. Federated learning: Link, Link2
  15. MLOps: Link
  16. Mixed Effect Models: Link, Link1
  17. ML System feature store: Link
  18. Data Science Cheat Sheet: Link
  19. Things can go wrong: Link
  20. Transformers from scratch Link
  21. Dive into Deep Learning Link
  22. DL Interview Link
  23. DL Rules of Thumb Link
  24. ML Forecasting Link
  25. MLOps without much Ops Link

ML System Design:

  1. Framework Link
  2. Product minded ML design. Link
  3. ML Design Link
  4. MLE Book Link
  5. ML System design Link
  6. Full stack deep learning Link
  7. Production Machine Learning Problems Link
  8. ML System Design Resources Link
  9. Metric Question Link
  10. Product Matrics Link
  11. ML Stack Template Link
  12. ML Design Link

About

It contains interview preparation notes provided by iNeuron

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published