-
Notifications
You must be signed in to change notification settings - Fork 13
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
converts HDExaminer outputs to a format usable by pyhdx to create an HDXMeasurement object
- Loading branch information
Showing
1 changed file
with
135 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,135 @@ | ||
''' convert_data.py 12june2024 LMT | ||
Function to convert data tables exported from HDExaminer to the processed DynamX format pyHDX expects | ||
this will leave any extra columns, but will chop out the MAX time points after processing | ||
Example use case: | ||
# 'all_results.csv' is a summary uptake table exported from HDExaminer | ||
# requires a <protein state>.fasta file for each Protein State | ||
import pandas as pd | ||
import numpy as np | ||
import os | ||
proj_dir = '' | ||
hdexdf = pd.read_csv(os.path.join(proj_dir,'all_results.csv')) | ||
pepdata = pd.DataFrame() | ||
pepdata = hdexa_to_pyhdx(hdexdf) | ||
hdxm = {} | ||
for mutant in pepdata['state'].unique(): | ||
fasta_sequence = SeqIO.parse(open(os.path.join(proj_dir,str(mutant)+'.fasta')),'fasta') | ||
for fasta in fasta_sequence: | ||
sequence = str(fasta.seq) | ||
#sequence[mutant] = str(fasta.seq) | ||
use_data = pepdata.copy()[(pepdata["state"]==mutant) & (pepdata["quality"]!="Low")] | ||
hdxm[mutant] = HDXMeasurement(use_data, temperature=303.15, pH=8., sequence=sequence) | ||
''' | ||
|
||
|
||
import pandas as pd | ||
import numpy as np | ||
|
||
|
||
def hdexa_to_pyhdx(data,d_percentage=0.85,protein='protein'): | ||
drop_first=2 | ||
|
||
def _time_to_sec(tp,tpunit): | ||
return tp * np.power(60.0,'smh'.find(tpunit[0])) | ||
if '# Deut' in data.columns: | ||
data = data.rename(columns={"# Deut":"#D"}) | ||
data['#D'] = data['#D'].fillna(0.0) | ||
data['#D'] = data['#D'].astype(float) | ||
if 'Deut %' in data.columns: | ||
data = data.rename(columns={"Deut %":"%D"}) | ||
data['%D'] = data['%D'].fillna(0.0) | ||
data['%D'] = data['%D'].astype(float) | ||
if 'Deut Time' in data.columns: | ||
data.loc[data['Deut Time'] == 'FD','Deut Time'] = '1e6s' | ||
data['time unit'] = data['Deut Time'].str[-1] | ||
data['Deut Time (sec)'] = data['Deut Time'].str[:-1].astype(float) | ||
data['Deut Time (sec)'] = data.apply(lambda x: _time_to_sec(tp=x['Deut Time (sec)'],tpunit=x['time unit']),axis=1) | ||
data.loc[data['Deut Time (sec)'] == 1e6,'Deut Time (sec)'] = 'MAX' | ||
if 'Protein' not in data.columns: | ||
data['Protein'] = protein | ||
|
||
|
||
pyhdx_cols = ['start', 'end' ,'stop' ,'sequence', 'state', 'exposure' ,'uptake' ,'maxuptake', | ||
'fd_uptake' ,'fd_uptake_sd' ,'nd_uptake' ,'nd_uptake_sd' ,'rfu', 'protein', | ||
'modification', 'fragment', 'mhp' ,'center' ,'center_sd' ,'uptake_sd' ,'rt', | ||
'rt_sd' ,'rfu_sd' ,'_sequence' ,'_start' ,'_stop' ,'ex_residues', | ||
'uptake_corrected'] | ||
data = data.rename(columns={ | ||
"Protein State":"state", | ||
"Protein":"protein", | ||
"Start":"start", | ||
"End":"end", | ||
"Sequence":"_sequence", | ||
"Peptide Mass":"mhp", | ||
"RT (min)":"rt", | ||
"Deut Time (sec)":"exposure", | ||
"maxD":"maxuptake", | ||
"Theor Uptake #D":"uptake_corrected", | ||
"#D":"uptake", | ||
"%D":"rfu", | ||
"Conf Interval (#D)":"rfu_sd", | ||
"#Rep":"rep", | ||
"Confidence":"quality", | ||
"Stddev":"center_sd", | ||
#"p" | ||
}) | ||
|
||
missing = list(set(pyhdx_cols)-set(data.columns)) | ||
for mcol in missing: | ||
data[mcol] = np.nan | ||
if mcol == "rfu_sd": data[mcol] = 0.05 #set 5% error as dummy value | ||
|
||
data['rfu']=data['rfu']/100. | ||
data.loc[data['exposure']=="0",'rfu_sd']=0.0 | ||
data['stop']=data['end']+1 | ||
data['sequence']=data["_sequence"].copy() | ||
data['sequence']=[s.replace("P", "p") for s in data["sequence"]] | ||
# Find the total number of n terminal / c_terminal residues to remove from pyhdx/process.py | ||
n_term = np.array([len(seq) - len(seq[drop_first:].lstrip("p")) for seq in data["sequence"]]) | ||
c_term = np.array([len(seq) - len(seq.rstrip("p")) for seq in data["sequence"]]) | ||
data["sequence"] = ["x" * nt + s[nt:] for nt, s in zip(n_term, data["sequence"])] | ||
data["_start"] = data["start"] + n_term | ||
data["_stop"] = data["stop"] - c_term | ||
ex_residues = (np.array([len(s) - s.count("x") - s.count("p") for s in data["sequence"]])* d_percentage) | ||
data["ex_residues"] = ex_residues | ||
data["uptake_sd"]=data["center_sd"] | ||
data["nd_uptake"]=0.0 | ||
data["nd_uptake_sd"]=0.0 | ||
data["modification"]=float("nan") | ||
data["fragment"]=float("nan") | ||
# upeps = data[data["exposure"]=="0"]["_sequence"].unique() | ||
# fpeps = data[data["exposure"]=="MAX"]["_sequence"].unique() | ||
# good_peps = np.array(list(set(upeps) & set(fpeps))) | ||
#peps = data["_sequence"].unique() | ||
states = data["state"].unique() | ||
data["fd_uptake"]="novalue" | ||
data["fd_uptake_sd"]="novalue" | ||
|
||
for state in states: | ||
peps = data[data["state"]==state]["_sequence"].unique() | ||
for pep in peps: | ||
fd_up = data[(data["_sequence"]==pep) & (data["exposure"]=="MAX")& (data["state"]==state)]['uptake'].iat[0] | ||
fd_up_sd = data[(data["_sequence"]==pep) & (data["exposure"]=="MAX")& (data["state"]==state)]['center_sd'].iat[0] | ||
data.loc[data["_sequence"]==pep, "fd_uptake"]=fd_up | ||
data.loc[data["_sequence"]==pep, "fd_uptake_sd"]=fd_up_sd | ||
data["center"]=data["mhp"]+data["uptake"] | ||
data["rt_sd"]=0.05 #dummy value | ||
|
||
data['uptake_corrected_orig'] = data['uptake_corrected'] #sometimes the HDExaminer output value is incorrect | ||
data['uptake_corrected'] = data["rfu"]*data['maxuptake'] # so revert to conversion from the rfu | ||
|
||
|
||
data = data[data["exposure"] != "MAX"] | ||
data = data[data["fd_uptake"] != 0] | ||
data = data[~data["uptake"].isna()] | ||
data["exposure"]=data["exposure"].astype(float) | ||
|
||
new_columns = [col for col in pyhdx_cols if col in data.columns] + [col for col in data.columns if col not in pyhdx_cols] | ||
return data[new_columns] |