-
Notifications
You must be signed in to change notification settings - Fork 25
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added new annotator into annotator page (#792)
- Loading branch information
1 parent
c2d2d22
commit d7e485c
Showing
7 changed files
with
1,420 additions
and
6 deletions.
There are no files selected for viewing
166 changes: 166 additions & 0 deletions
166
docs/en/licensed_annotator_entries/AverageEmbeddings.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,166 @@ | ||
{%- capture title -%} | ||
AverageEmbeddings | ||
{%- endcapture -%} | ||
|
||
{%- capture model -%} | ||
model | ||
{%- endcapture -%} | ||
|
||
{%- capture model_description -%} | ||
`AverageEmbeddings` computes the mean of vector embeddings for two sentences of equal size, producing a unified representation. | ||
{%- endcapture -%} | ||
|
||
{%- capture model_input_anno -%} | ||
SENTENCE_EMBEDDINGS, SENTENCE_EMBEDDINGS, CHUNK | ||
{%- endcapture -%} | ||
|
||
{%- capture model_output_anno -%} | ||
EMBEDDINGS | ||
{%- endcapture -%} | ||
|
||
{%- capture model_python_medical -%} | ||
from johnsnowlabs import nlp, medical | ||
|
||
document_assembler = nlp.DocumentAssembler()\ | ||
.setInputCol("text")\ | ||
.setOutputCol("document")\ | ||
|
||
sentence_detector = nlp.SentenceDetector()\ | ||
.setInputCols(["document"])\ | ||
.setOutputCol("sentence") | ||
|
||
doc2Chunk = nlp.Doc2Chunk() \ | ||
.setInputCols("sentence") \ | ||
.setOutputCol("chunk") \ | ||
.setIsArray(True) | ||
|
||
sbiobert_base_cased_mli = nlp.BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli", "en", "clinical/models")\ | ||
.setInputCols("sentence")\ | ||
.setOutputCol("sbiobert_base_cased_mli") | ||
|
||
sent_biobert_clinical_base_cased = nlp.BertSentenceEmbeddings.pretrained("sent_biobert_clinical_base_cased", "en") \ | ||
.setInputCols("sentence") \ | ||
.setOutputCol("sent_biobert_clinical_base_cased") | ||
|
||
avg_embeddings = medical.AverageEmbeddings()\ | ||
.setInputCols(["sent_biobert_clinical_base_cased","sbiobert_base_cased_mli","chunk"])\ | ||
.setOutputCol("embeddings") | ||
|
||
pipeline = nlp.Pipeline( | ||
stages=[ | ||
document_assembler, | ||
sentence_detector, | ||
doc2Chunk, | ||
sbiobert_base_cased_mli, | ||
sent_biobert_clinical_base_cased, | ||
avg_embeddings | ||
]) | ||
|
||
data = spark.createDataFrame([[" The patient was prescribed 1 capsule of Advil for 5 days "]]).toDF("text") | ||
|
||
result = pipeline.fit(data).transform(data) | ||
|
||
result_df = result.select(F.explode(F.arrays_zip(result.chunk.result, | ||
result.chunk.metadata, | ||
result.sentence.result, | ||
result.embeddings.embeddings, | ||
result.sent_biobert_clinical_base_cased.embeddings, | ||
result.sbiobert_base_cased_mli.embeddings,)).alias("cols"))\ | ||
.select(F.expr("cols['0']").alias("sentence"), | ||
F.expr("cols['1']").alias("sentence_metadata"), | ||
F.expr("cols['2']").alias("chunk"), | ||
F.expr("cols['3']").alias("embeddings"), | ||
F.expr("cols['4']").alias("sent_biobert_clinical_base_cased"), | ||
F.expr("cols['5']").alias("sbiobert_base_cased_mli")) | ||
|
||
result_df.show(50, truncate=1000) | ||
|
||
## Result | ||
|
||
+--------------------------------------------------+---------------------------+--------------------------------------------------+--------------------------------------------------+--------------------------------------------------+--------------------------------------------------+ | ||
| sentence| sentence_metadata| chunk| embeddings| sent_biobert_clinical_base_cased| sbiobert_base_cased_mli| | ||
+--------------------------------------------------+---------------------------+--------------------------------------------------+--------------------------------------------------+--------------------------------------------------+--------------------------------------------------+ | ||
|The patient was prescribed 1 capsule of Advil f...|{sentence -> 0, chunk -> 0}|The patient was prescribed 1 capsule of Advil f...|[0.32466835, 0.12497781, -0.20237188, 0.3716198...|[-0.07857181, -0.061015874, -0.020198729, 0.177...|[0.7279085, 0.3109715, -0.38454503, 0.5657965, ...| | ||
+--------------------------------------------------+---------------------------+--------------------------------------------------+--------------------------------------------------+--------------------------------------------------+--------------------------------------------------+ | ||
|
||
|
||
{%- endcapture -%} | ||
|
||
|
||
{%- capture model_scala_medical -%} | ||
|
||
import spark.implicits._ | ||
|
||
val document_assembler = new DocumentAssembler() | ||
.setInputCol("text") | ||
.setOutputCol("document") | ||
|
||
val sentence_detector = new SentenceDetector() | ||
.setInputCols("document") | ||
.setOutputCol("sentence") | ||
|
||
val doc2Chunk = new Doc2Chunk() | ||
.setInputCols("sentence") | ||
.setOutputCol("chunk") | ||
.setIsArray(true) | ||
|
||
val sbiobert_base_cased_mli = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli","en","clinical/models") | ||
.setInputCols("sentence") | ||
.setOutputCol("sbiobert_base_cased_mli") | ||
|
||
val sent_biobert_clinical_base_cased = BertSentenceEmbeddings.pretrained("sent_biobert_clinical_base_cased","en") | ||
.setInputCols("sentence") | ||
.setOutputCol("sent_biobert_clinical_base_cased") | ||
|
||
val avg_embeddings = new AverageEmbeddings() | ||
.setInputCols(Array("sent_biobert_clinical_base_cased","sbiobert_base_cased_mli","chunk")) | ||
.setOutputCol("embeddings") | ||
|
||
val pipeline = Pipeline().setStages(Array( | ||
document_assembler, | ||
sentence_detector, | ||
doc2Chunk, | ||
sbiobert_base_cased_mli, | ||
sent_biobert_clinical_base_cased, | ||
avg_embeddings)) | ||
|
||
val data = Seq(" The patient was prescribed 1 capsule of Advil for 5 days").toDF("text") | ||
|
||
val result = pipeline.fit(data).transform(data) | ||
|
||
// Show results | ||
+--------------------------------------------------+---------------------------+--------------------------------------------------+--------------------------------------------------+--------------------------------------------------+--------------------------------------------------+ | ||
| sentence| sentence_metadata| chunk| embeddings| sent_biobert_clinical_base_cased| sbiobert_base_cased_mli| | ||
+--------------------------------------------------+---------------------------+--------------------------------------------------+--------------------------------------------------+--------------------------------------------------+--------------------------------------------------+ | ||
|The patient was prescribed 1 capsule of Advil f...|{sentence -> 0, chunk -> 0}|The patient was prescribed 1 capsule of Advil f...|[0.32466835, 0.12497781, -0.20237188, 0.3716198...|[-0.07857181, -0.061015874, -0.020198729, 0.177...|[0.7279085, 0.3109715, -0.38454503, 0.5657965, ...| | ||
+--------------------------------------------------+---------------------------+--------------------------------------------------+--------------------------------------------------+--------------------------------------------------+--------------------------------------------------+ | ||
|
||
|
||
{%- endcapture -%} | ||
|
||
{%- capture model_api_link -%} | ||
[AverageEmbeddings](https://nlp.johnsnowlabs.com/licensed/api/com/johnsnowlabs/nlp/annotators/embeddings/AverageEmbeddings.html) | ||
{%- endcapture -%} | ||
|
||
{%- capture model_python_api_link -%} | ||
[AverageEmbeddings](https://nlp.johnsnowlabs.com/licensed/api/python/reference/autosummary/sparknlp_jsl/annotator/embeddings/average_embeddings/index.html#sparknlp_jsl.annotator.embeddings.average_embeddings.AverageEmbeddings) | ||
{%- endcapture -%} | ||
|
||
{%- capture model_notebook_link -%} | ||
[AverageEmbeddingsNotebook](https://github.com/JohnSnowLabs/spark-nlp-workshop/blob/Healthcare_MOOC/Spark_NLP_Udemy_MOOC/Healthcare_NLP/AverageEmbeddings.ipynb) | ||
{%- endcapture -%} | ||
|
||
|
||
|
||
{% include templates/licensed_approach_model_medical_fin_leg_template.md | ||
title=title | ||
model=model | ||
model_description=model_description | ||
model_input_anno=model_input_anno | ||
model_output_anno=model_output_anno | ||
model_python_medical=model_python_medical | ||
model_scala_medical=model_scala_medical | ||
model_api_link=model_api_link | ||
model_python_api_link=model_python_api_link | ||
model_notebook_link=model_notebook_link | ||
%} |
Oops, something went wrong.