-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
59 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,59 @@ | ||
import numpy as np | ||
from scipy.linalg import expm | ||
|
||
def calculate_wormhole_stability(matrix_a, matrix_b): | ||
""" | ||
Calculate the stability of a wormhole using the eigenvalues of the matrices A and B. | ||
Args: | ||
matrix_a (numpy array): Matrix A representing the wormhole's gravitational field. | ||
matrix_b (numpy array): Matrix B representing the wormhole's exotic matter distribution. | ||
Returns: | ||
float: The stability of the wormhole (0 = unstable, 1 = stable). | ||
""" | ||
eigenvalues_a = np.linalg.eigvals(matrix_a) | ||
eigenvalues_b = np.linalg.eigvals(matrix_b) | ||
stability = np.dot(eigenvalues_a, eigenvalues_b) / (np.linalg.norm(eigenvalues_a) * np.linalg.norm(eigenvalues_b)) | ||
return stability | ||
|
||
def optimize_faster_than_light_travel(trajectory, mass_ratio): | ||
""" | ||
Optimize a faster-than-light travel trajectory using the Alcubierre Warp Drive metric. | ||
Args: | ||
trajectory (numpy array): The initial trajectory of the spacecraft. | ||
mass_ratio (float): The mass ratio of the spacecraft to the exotic matter. | ||
Returns: | ||
numpy array: The optimized trajectory. | ||
""" | ||
# Calculate the Alcubierre Warp Drive metric | ||
metric = np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, -1]]) | ||
metric[0, 0] = 1 - mass_ratio * np.exp(-(trajectory[0] ** 2 + trajectory[1] ** 2 + trajectory[2] ** 2) / (2 * mass_ratio ** 2)) | ||
|
||
# Optimize the trajectory using a genetic algorithm | ||
from scipy.optimize import differential_evolution | ||
bounds = [(0, 1), (0, 1), (0, 1), (0, 1)] | ||
result = differential_evolution(lambda x: -np.linalg.norm(np.dot(metric, x)), bounds) | ||
optimized_trajectory = result.x | ||
|
||
return optimized_trajectory | ||
|
||
def calculate_quantum_entanglement(state_vector): | ||
""" | ||
Calculate the quantum entanglement of a state vector using the von Neumann entropy. | ||
Args: | ||
state_vector (numpy array): The state vector of the quantum system. | ||
Returns: | ||
float: The quantum entanglement of the state vector. | ||
""" | ||
# Calculate the density matrix | ||
density_matrix = np.outer(state_vector, state_vector) | ||
|
||
# Calculate the von Neumann entropy | ||
entropy = -np.trace(np.dot(density_matrix, np.log2(density_matrix))) | ||
|
||
return entropy |