-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
66 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
# Import necessary libraries | ||
import cv2 | ||
import numpy as np | ||
from sklearn.svm import SVC | ||
|
||
# Define a class for computer vision models | ||
class ComputerVision: | ||
def __init__(self, model_type): | ||
self.model_type = model_type | ||
self.model = self._create_model() | ||
|
||
def _create_model(self): | ||
# Create a computer vision model using OpenCV and scikit-learn | ||
if self.model_type == 'face_detection': | ||
return cv2.dnn.readNetFromCaffe('face_detection_model.prototxt', 'face_detection_model.caffemodel') | ||
elif self.model_type == 'object_detection': | ||
return cv2.dnn.readNetFromDarknet('yolov3.cfg', 'yolov3.weights') | ||
elif self.model_type == 'image_classification': | ||
return SVC(kernel='linear', probability=True) | ||
|
||
def detect_faces(self, image): | ||
# Detect faces in an image using the face detection model | ||
blob = cv2.dnn.blobFromImage(image, 1, (300, 300), (104, 177, 123)) | ||
self.model.setInput(blob) | ||
detections = self.model.forward() | ||
faces = [] | ||
for i in range(detections.shape[2]): | ||
confidence = detections[0, 0, i, 2] | ||
if confidence > 0.5: | ||
x1 = int(detections[0, 0, i, 3] * image.shape[1]) | ||
y1 = int(detections[0, 0, i, 4] * image.shape[0]) | ||
x2 = int(detections[0, 0, i, 5] * image.shape[1]) | ||
y2 = int(detections[0, 0, i, 6] * image.shape[0]) | ||
faces.append((x1, y1, x2, y2)) | ||
return faces | ||
|
||
def detect_objects(self, image): | ||
# Detect objects in an image using the object detection model | ||
blob = cv2.dnn.blobFromImage(image, 1/255, (416, 416), [0,0,0], 1, crop=False) | ||
self.model.setInput(blob) | ||
outputs = self.model.forward(self.model.getUnconnectedOutLayersNames()) | ||
objects = [] | ||
for output in outputs: | ||
for detection in output: | ||
scores = detection[5:] | ||
class_id = np.argmax(scores) | ||
confidence = scores[class_id] | ||
if confidence > 0.5: | ||
x1 = int(detection[0] * image.shape[1]) | ||
y1 = int(detection[1] * image.shape[0]) | ||
x2 = int(detection[2] * image.shape[1]) | ||
y2 = int(detection[3] * image.shape[0]) | ||
objects.append((x1, y1,x2, y2, class_id, confidence)) | ||
return objects | ||
|
||
def classify_image(self, image): | ||
# Classify an image using the image classification model | ||
# Implement feature extraction and classification logic here | ||
pass | ||
|
||
# Define a function to load a computer vision model | ||
def load_computer_vision(model_path): | ||
# Load the computer vision model from a file | ||
model = ComputerVision('face_detection') | ||
model.model = cv2.dnn.readNetFromCaffe(model_path) | ||
return model |