(csv file): https://www.kaggle.com/datasets/barkhaverma/student-performance
Supervised Learning algorithms:
- LASSO (recommended by Bob): "LASSO is a type of linear regression that uses shrinkage. Shrinkage is where data values are shrunk towards a central point, like the mean. The lasso procedure encourages simple, sparse models (i.e. models with fewer parameters).This particular type of regression is well-suited for models showing high levels of muticollinearity (Multicollinearity can adversely affect your regression results.Multicollinearity generally occurs when there are high correlations between two or more predictor variables. In other words, one predictor variable can be used to predict the other)".
The acronym “LASSO” stands for Least Absolute Shrinkage and Selection Operator.
https://www.statisticshowto.com/lasso-regression/ How to do LASSO: https://www.kirenz.com/post/2019-08-12-python-lasso-regression-auto/
***All attributes: ***
1 school - student's school (binary: 'GP' - Gabriel Pereira or 'MS' - Mousinho da Silveira) 2 sex - student's sex (binary: 'F' - female or 'M' - male) 3 age - student's age (numeric: from 15 to 22) 4 address - student's home address type (binary: 'U' - urban or 'R' - rural) 5 famsize - family size (binary: 'LE3' - less or equal to 3 or 'GT3' - greater than 3) 6 Pstatus - parent's cohabitation status (binary: 'T' - living together or 'A' - apart) 7 Medu - mother's education (numeric: 0 - none, 1 - primary education (4th grade), 2 – 5th to 9th grade, 3 – secondary education or 4 – higher education) 8 Fedu - father's education (numeric: 0 - none, 1 - primary education (4th grade), 2 – 5th to 9th grade, 3 – secondary education or 4 – higher education) 9 Mjob - mother's job (nominal: 'teacher', 'health' care related, civil 'services' (e.g. administrative or police), 'at_home' or 'other') 10 Fjob - father's job (nominal: 'teacher', 'health' care related, civil 'services' (e.g. administrative or police), 'at_home' or 'other') 11 reason - reason to choose this school (nominal: close to 'home', school 'reputation', 'course' preference or 'other') 12 guardian - student's guardian (nominal: 'mother', 'father' or 'other') 13 traveltime - home to school travel time (numeric: 1 - <15 min., 2 - 15 to 30 min., 3 - 30 min. to 1 hour, or 4 - >1 hour) 14 studytime - weekly study time (numeric: 1 - <2 hours, 2 - 2 to 5 hours, 3 - 5 to 10 hours, or 4 - >10 hours) 15 failures - number of past class failures (numeric: n if 1<=n<3, else 4) 16 schoolsup - extra educational support (binary: yes or no) 17 famsup - family educational support (binary: yes or no) 18 paid - extra paid classes within the course subject (Math or Portuguese) (binary: yes or no) 19 activities - extra-curricular activities (binary: yes or no) 20 nursery - attended nursery school (binary: yes or no) 21 higher - wants to take higher education (binary: yes or no) 22 internet - Internet access at home (binary: yes or no) 23 romantic - with a romantic relationship (binary: yes or no) 24 famrel - quality of family relationships (numeric: from 1 - very bad to 5 - excellent) 25 freetime - free time after school (numeric: from 1 - very low to 5 - very high) 26 goout - going out with friends (numeric: from 1 - very low to 5 - very high) 27 Dalc - workday alcohol consumption (numeric: from 1 - very low to 5 - very high) 28 Walc - weekend alcohol consumption (numeric: from 1 - very low to 5 - very high) 29 health - current health status (numeric: from 1 - very bad to 5 - very good) 30 absences - number of school absences (numeric: from 0 to 93)
Interesting links to look at for the project:
- Machine Learning Project on Student grade Prediction | Great Learning: https://www.youtube.com/watch?v=Y3y8v9PrMMY
- On this link there is a relevant project and source code: https://1000projects.org/student-grade-analysis-prediction-machine-learning-project.html#google_vignette
- https://www.youtube.com/watch?v=6xhuxwW1tdI
Citation Request (from UCI):
Please refer to the Machine Learning Repository's citation policy