2022년 1학기 컴퓨터공학과 캡스톤디자인1 오픈코드팀
Model + Method | Train Top1 Accuracy | Validation Top1 Accuracy | Test Top1 Accuracy |
---|---|---|---|
ResNet18 | 100 | 65.41 | 65.46 |
ResNet18+CutMix | 98.62 | 73.57 | 73.15 |
ResNet18+Mixup | 97.38 | 73.53 | 73.32 |
ResNet18+CutMixup | 99.98 | 67.11 | 67.45 |
ResNet18+Multiple Data Augmentation(CutMix+Mixup) | 92.80 | 75.12 | 74.95 |
ResNet34 | 100 | 66.30 | 65.50 |
ResNet34+CutMix | 98.14 | 73.03 | 74.54 |
ResNet34+Mixup | 97.15 | 72.92 | 72.96 |
ResNet34+CutMixup | 99.95 | 68.04 | 67.78 |
ResNet34+Multiple Data Augmentation(CutMix+Mixup) | 92.39 | 73.65 | 73.95 |
DenseNet169 | 100 | 71.59 | 71.45 |
DenseNet169+CutMix | 98.33 | 77.57 | 77.72 |
DenseNet169+Mixup | 76.19 | 76.45 | 77.07 |
DenseNet169+CutMixup | 98.89 | 76.33 | 76.87 |
DenseNet169+Multiple Data Augmentation(CutMix+Mixup) | 73.74 | 77.14 | 77.95 |
- Python 3.7.13
- Pytorch 1.11.0
- CUDA 11.3
- Ubuntu 18.04.5 LTS
- Tesla P100