Code for paper Pushing Paraphrase Away from Original Sentence: A Multi-Round Paraphrase Generation Approach by Zhe Lin, Xiaojun Wan. This paper is accepted by Findings of ACL'21. Please contact me at [email protected] for any question.
PyTorch 1.4
NLTK 3.5
You should first create a vocabulary from your corpora. You can use the following command.
python createVocab.py --file ~/context/train.tgt ~/context/train.src \
--save_path ~/context/vocab.pkl \
--vocab_num 50000
You can train your model leveraged the following command:
python train.py --cuda --cuda_num 5 \
--train_source ~/context/train.src \
--train_target ~/context/train.tgt \
--test_source ~/context/test.src \
--test_target ~/context/test.tgt \
--vocab_path ~/context/vocab.pkl \
--batch_size 32\
--epoch 100 \
--num_rounds 2 \
--max_length 110 \
--clip_length 100 \
--model_save_path ~/context/output/model.pth \
--generation_save_path ~/context/output
After training, you can leverage the following command to generate multi-round paraphrase.
python generator.py --cuda --cuda_num 3 \
--source ~/context/test.src \
--target ~/context/test.tgt \
--vocab_path ~/context/vocab.pkl \
--batch_size 64 \
--num_rounds 10 \
--max_length 60 \
--model_path ~/context/model.pth \
--save_path ~/context/output/
We also provide the pretrain-model file in releases page.
If you use any content of this repo for your work, please cite the following bib entry:
@inproceedings{lin-wan-2021-pushing,
title = "Pushing Paraphrase Away from Original Sentence: A Multi-Round Paraphrase Generation Approach",
author = "Lin, Zhe and
Wan, Xiaojun",
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-acl.135",
doi = "10.18653/v1/2021.findings-acl.135",
pages = "1548--1557",
}