Skip to content

Commit

Permalink
separate fit_model and add code format
Browse files Browse the repository at this point in the history
  • Loading branch information
andre_ramos committed Oct 26, 2024
1 parent 65acdd7 commit 03e5b55
Show file tree
Hide file tree
Showing 32 changed files with 1,794 additions and 1,369 deletions.
8 changes: 7 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
@@ -1,2 +1,8 @@
.DS_Store
Manifest.toml
Manifest.toml

local_test/
paper_tests/m4_test/metrics_results/
paper_tests/m4_test/results_ARIMA/
paper_tests/m4_test/results_SSL/
paper_tests/simulation_test/results_simulation_raw/
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "StateSpaceLearning"
uuid = "971c4b7c-2c4e-4bac-8525-e842df3cde7b"
authors = ["andreramosfc <[email protected]>"]
version = "0.3.0"
version = "1.0.0"

[deps]
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
Expand Down
86 changes: 46 additions & 40 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,33 +13,31 @@ using StateSpaceLearning

y = randn(100)

#Fit Model
output = StateSpaceLearning.fit_model(y)

#Main output options
model_input = output.model_input # Model inputs that were utilized to build the regression matrix.
Create_X = output.Create_X # The function utilized to build the regression matrix.
X = output.X # High Dimension Regression utilized in the estimation.
coefs = output.coefs # High Dimension Regression coefficients estimated in the estimation.
ε = output.ε # Residuals of the model.
fitted = output.fitted # Fit in Sample of the model.
components = output.components # Dictionary containing information about each component of the model, each component has the keys: "Values" (The value of the component in each timestamp) , "Coefs" (The coefficients estimated for each element of the component) and "Indexes" (The indexes of the elements of the component in the high dimension regression "X").
residuals_variances = output.residuals_variances # Dictionary containing the estimated variances for the innovations components (that is the information that can be utilized to initialize the state space model).
valid_indexes = output.valid_indexes # Vector containing valid indexes of the time series (non valid indexes represent NaN values in the time series).

#Forecast
# Instantiate Model
model = StructuralModel(y)

# Fit Model
fit!(model)

# Point Forecast
prediction = StateSpaceLearning.forecast(output, 12) #Gets a 12 steps ahead prediction

# Scenarios Path Simulation
simulation = StateSpaceLearning.simulate(output, 12, 1000) #Gets 1000 scenarios path of 12 steps ahead predictions
```

## Fit Arguments
## StructuralModel Arguments

* `y::Vector{Fl}`: Vector of data.
* `model_input::Dict`: Dictionary containing the model input parameters (default: Dict("level" => true, "stochastic\_level" => true, "trend" => true, "stochastic\_trend" => true, "seasonal" => true, "stochastic\_seasonal" => true, "freq\_seasonal" => 12, "outlier" => true, , "ζ\_ω\_threshold" => 12)).
* `model_functions::Dict`: Dictionary containing the model functions (default: Dict("create\_X" => create\_X, "get\_components\_indexes" => get\_components\_indexes, "get\_variances" => get\_variances)).
* `estimation_input::Dict`: Dictionary containing the estimation input parameters (default: Dict("α" => 0.1, "information\_criteria" => "aic", ψ => 0.05, "penalize\_exogenous" => true, "penalize\_initial\_states" => true)).
* `estimation_function::Function`: Estimation function (default: default\_estimation\_procedure).
* `Exogenous_X::Union{Matrix{Fl}, Missing}`: Exogenous variables matrix (default: missing).
* `y::Vector`: Vector of data.
* `level::Bool`: Boolean where to consider intercept in the model (default: true)
* `stochastic_level::Bool`: Boolean where to consider stochastic level component in the model (default: true)
* `trend::Bool`: Boolean where to consider trend component in the model (default: true)
* `stochastic_trend::Bool`: Boolean where to consider stochastic trend component in the model (default: true)
* `seasonal::Bool`: Boolean where to consider seasonal component in the model (default: true)
* `stochastic_seasonal::Bool`: Boolean where to consider stochastic seasonal component in the model (default: true)
* `freq_seasonal::Int`: Seasonal frequency to be considered in the model (default: 12)
* `outlier::Bool`: Boolean where to consider outlier component in the model (default: true)
* `ζ_ω_threshold::Int`: Argument to stabilize `stochastic trend` and `stochastic seasonal` components (default: 12)

## Features

Expand All @@ -66,8 +64,9 @@ airp = CSV.File(StateSpaceLearning.AIR_PASSENGERS) |> DataFrame
log_air_passengers = log.(airp.passengers)
steps_ahead = 30

output = StateSpaceLearning.fit_model(log_air_passengers)
prediction_log = StateSpaceLearning.forecast(output, steps_ahead) # arguments are the output of the fitted model and number of steps ahead the user wants to forecast
model = StructuralModel(log_air_passengers)
fit!(model)
prediction_log = StateSpaceLearning.forecast(model, steps_ahead) # arguments are the output of the fitted model and number of steps ahead the user wants to forecast
prediction = exp.(prediction_log)

plot(airp.passengers, w=2 , color = "Black", lab = "Historical", legend = :outerbottom)
Expand All @@ -77,7 +76,7 @@ plot!(vcat(ones(length(log_air_passengers)).*NaN, prediction), lab = "Forecast",

```julia
N_scenarios = 1000
simulation = StateSpaceLearning.simulate(output, steps_ahead, N_scenarios) # arguments are the output of the fitted model, number of steps ahead the user wants to forecast and number of scenario paths
simulation = StateSpaceLearning.simulate(model, steps_ahead, N_scenarios) # arguments are the output of the fitted model, number of steps ahead the user wants to forecast and number of scenario paths

plot(airp.passengers, w=2 , color = "Black", lab = "Historical", legend = :outerbottom)
for s in 1:N_scenarios-1
Expand All @@ -99,11 +98,12 @@ using Plots
airp = CSV.File(StateSpaceLearning.AIR_PASSENGERS) |> DataFrame
log_air_passengers = log.(airp.passengers)

output = StateSpaceLearning.fit_model(log_air_passengers)
model = StructuralModel(log_air_passengers)
fit!(model)

level = output.components["μ1"]["Values"] + output.components["ξ"]["Values"]
slope = output.components["ν1"]["Values"] + output.components["ζ"]["Values"]
seasonal = output.components["γ1"]["Values"] + output.components["ω"]["Values"]
level = model.output.components["μ1"]["Values"] + model.output.components["ξ"]["Values"]
slope = model.output.components["ν1"]["Values"] + model.output.components["ζ"]["Values"]
seasonal = model.output.components["γ1"]["Values"] + model.output.components["ω"]["Values"]
trend = level + slope

plot(trend, w=2 , color = "Black", lab = "Trend Component", legend = :outerbottom)
Expand Down Expand Up @@ -133,9 +133,10 @@ X = rand(length(log_air_passengers), 10) # Create 10 exogenous features

y = log_air_passengers + X[:, 1:3]*β # add to the log_air_passengers series a contribution from only 3 exogenous features.

output = StateSpaceLearning.fit_model(y; Exogenous_X = X, estimation_input = Dict("α" => 1.0, "information_criteria" => "bic", "ε" => 0.05, "penalize_exogenous" => true, "penalize_initial_states" => true))
model = StructuralModel(y; Exogenous_X = X)
fit!(model; α = 1.0, information_criteria = "bic", ϵ = 0.05, penalize_exogenous = true, penalize_initial_states = true)

Selected_exogenous = output.components["Exogenous_X"]["Selected"]
Selected_exogenous = model.output.components["Exogenous_X"]["Selected"]

```

Expand All @@ -155,9 +156,10 @@ log_air_passengers = log.(airp.passengers)
airpassengers = Float64.(airp.passengers)
log_air_passengers[60:72] .= NaN

output = StateSpaceLearning.fit_model(log_air_passengers)
model = StructuralModel(log_air_passengers)
fit!(model)

fitted_completed_missing_values = ones(144).*NaN; fitted_completed_missing_values[60:72] = exp.(output.fitted[60:72])
fitted_completed_missing_values = ones(144).*NaN; fitted_completed_missing_values[60:72] = exp.(model.output.fitted[60:72])
real_removed_valued = ones(144).*NaN; real_removed_valued[60:72] = deepcopy(airp.passengers[60:72])
airpassengers[60:72] .= NaN

Expand All @@ -183,8 +185,10 @@ log_air_passengers[60] = 10
log_air_passengers[30] = 1
log_air_passengers[100] = 2

output = StateSpaceLearning.fit_model(log_air_passengers)
detected_outliers = findall(i -> i != 0, output.components["o"]["Coefs"])
model = StructuralModel(log_air_passengers)
fit!(model)

detected_outliers = findall(i -> i != 0, model.output.components["o"]["Coefs"])

plot(log_air_passengers, w=2 , color = "Black", lab = "Historical", legend = :outerbottom)
scatter!([detected_outliers], log_air_passengers[detected_outliers], lab = "Detected Outliers")
Expand All @@ -203,15 +207,17 @@ using StateSpaceModels
airp = CSV.File(StateSpaceLearning.AIR_PASSENGERS) |> DataFrame
log_air_passengers = log.(airp.passengers)

output = StateSpaceLearning.fit_model(log_air_passengers)
residuals_variances = output.residuals_variances
model = StructuralModel(log_air_passengers)
fit!(model)

model = BasicStructural(log_air_passengers, 12)
set_initial_hyperparameters!(model, Dict("sigma2_ε" => residuals_variances["ε"],
residuals_variances = model.output.residuals_variances

ss_model = BasicStructural(log_air_passengers, 12)
set_initial_hyperparameters!(ss_model, Dict("sigma2_ε" => residuals_variances["ε"],
"sigma2_ξ" =>residuals_variances["ξ"],
"sigma2_ζ" =>residuals_variances["ζ"],
"sigma2_ω" =>residuals_variances["ω"]))
fit!(model)
StateSpaceModels.fit!(ss_model)
```

## Paper Results Reproducibility
Expand Down
31 changes: 12 additions & 19 deletions docs/make.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,25 +3,18 @@ using Documenter
include("../src/StateSpaceLearning.jl")

# Set up to run docstrings with jldoctest
DocMeta.setdocmeta!(
StateSpaceLearning, :DocTestSetup, :(using StateSpaceLearning); recursive=true
)
DocMeta.setdocmeta!(StateSpaceLearning, :DocTestSetup, :(using StateSpaceLearning);
recursive=true)

makedocs(;
modules=[StateSpaceLearning],
doctest=true,
clean=true,
checkdocs=:none,
format=Documenter.HTML(mathengine=Documenter.MathJax2()),
sitename="StateSpaceLearning.jl",
authors="André Ramos",
pages=[
"Home" => "index.md", "manual.md",
"adapting_package.md"
],
)
modules=[StateSpaceLearning],
doctest=true,
clean=true,
checkdocs=:none,
format=Documenter.HTML(; mathengine=Documenter.MathJax2()),
sitename="StateSpaceLearning.jl",
authors="André Ramos",
pages=["Home" => "index.md", "manual.md"],)

deploydocs(
repo="github.com/LAMPSPUC/StateSpaceLearning.jl.git",
push_preview = true
)
deploydocs(; repo="github.com/LAMPSPUC/StateSpaceLearning.jl.git",
push_preview=true)
93 changes: 0 additions & 93 deletions docs/src/adapting_package.md

This file was deleted.

Loading

0 comments on commit 03e5b55

Please sign in to comment.