-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
draft of exp 2 with galaxies between snr (8, 100)
- Loading branch information
1 parent
549095f
commit 949f3a8
Showing
1 changed file
with
143 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,143 @@ | ||
#!/usr/bin/env python3 | ||
"""Check chains ran on a variety of galaxies with different SNR, initialization from the prior.""" | ||
|
||
import time | ||
from functools import partial | ||
|
||
import jax.numpy as jnp | ||
import typer | ||
from jax import jit as jjit | ||
from jax import random, vmap | ||
from jax._src.prng import PRNGKeyArray | ||
|
||
from bpd import DATA_DIR | ||
from bpd.chains import run_sampling_nuts, run_warmup_nuts | ||
from bpd.draw import draw_gaussian | ||
from bpd.initialization import init_with_prior | ||
from bpd.pipelines.image_samples import ( | ||
get_target_galaxy_params_simple, | ||
get_target_images, | ||
get_true_params_from_galaxy_params, | ||
loglikelihood, | ||
logprior, | ||
logtarget, | ||
) | ||
|
||
|
||
def sample_prior( | ||
rng_key: PRNGKeyArray, | ||
*, | ||
flux_bds: tuple = (2.5, 4.0), | ||
hlr_bds: tuple = (0.7, 2.0), | ||
shape_noise: float = 0.3, | ||
g1: float = 0.02, | ||
g2: float = 0.0, | ||
) -> dict[str, float]: | ||
k1, k2, k3 = random.split(rng_key, 3) | ||
|
||
lf = random.uniform(k1, minval=flux_bds[0], maxval=flux_bds[1]) | ||
hlr = random.uniform(k2, minval=hlr_bds[0], maxval=hlr_bds[1]) | ||
|
||
other_params = get_target_galaxy_params_simple( | ||
k3, shape_noise=shape_noise, g1=g1, g2=g2 | ||
) | ||
|
||
return {"lf": lf, "hlr": hlr, **other_params} | ||
|
||
|
||
def _sample_prior_init(rng_key: PRNGKeyArray): | ||
prior_samples = sample_prior(rng_key) | ||
truth_samples = get_true_params_from_galaxy_params(prior_samples) | ||
return truth_samples | ||
|
||
|
||
INIT_FNC = partial(init_with_prior, prior=_sample_prior_init) | ||
|
||
|
||
def main( | ||
seed: int, | ||
n_samples: int = 100, | ||
shape_noise: float = 0.3, | ||
sigma_e_int: float = 0.5, | ||
slen: int = 53, | ||
fft_size: int = 256, | ||
background: float = 1.0, | ||
initial_step_size: float = 0.1, | ||
): | ||
rng_key = random.key(seed) | ||
pkey, nkey, ikey, rkey = random.split(rng_key, 4) | ||
|
||
# directory structure | ||
dirpath = DATA_DIR / "cache_chains" / f"test_image_sampling_{seed}" | ||
if not dirpath.exists(): | ||
dirpath.mkdir(exist_ok=True) | ||
|
||
draw_fnc = partial(draw_gaussian, slen=slen, fft_size=fft_size) | ||
_loglikelihood = partial(loglikelihood, draw_fnc=draw_fnc, background=background) | ||
_logprior = partial(logprior, sigma_e=sigma_e_int) | ||
_logtarget = partial( | ||
logtarget, logprior_fnc=_logprior, loglikelihood_fnc=_loglikelihood | ||
) | ||
|
||
_run_warmup1 = partial( | ||
run_warmup_nuts, | ||
logtarget=_logtarget, | ||
initial_step_size=initial_step_size, | ||
max_num_doublings=5, | ||
n_warmup_steps=500, | ||
) | ||
_run_warmup = vmap(vmap(jjit(_run_warmup1), in_axes=(0, 0, None))) | ||
|
||
_run_sampling1 = partial( | ||
run_sampling_nuts, | ||
logtarget=_logtarget, | ||
n_samples=n_samples, | ||
max_num_doublings=5, | ||
) | ||
_run_sampling = vmap(vmap(jjit(_run_sampling1), in_axes=(0, 0, 0, None))) | ||
|
||
results = {} | ||
for n_gals in (1, 1, 5, 10, 50, 100, 250): # repeat 1 == compilation | ||
# generate data and parameters | ||
pkeys = random.split(pkey, n_gals) | ||
galaxy_params = vmap(partial(sample_prior, shape_noise=shape_noise))(pkeys) | ||
assert galaxy_params["x"].shape == (n_gals,) | ||
|
||
draw_params = {**galaxy_params} | ||
draw_params["f"] = 10 ** draw_params.pop("lf") | ||
target_images = get_target_images( | ||
nkey, draw_params, background=background, slen=slen | ||
) | ||
assert target_images.shape == (n_gals, slen, slen) | ||
true_params = vmap(get_true_params_from_galaxy_params)(galaxy_params) | ||
|
||
# initialize positions | ||
ikeys = random.split(ikey, (n_gals, 4)) | ||
init_positions = vmap(vmap(INIT_FNC, in_axes=(0, None)))(ikeys, true_params) | ||
|
||
gkeys = random.split(rkey, (n_gals, 4, 2)) | ||
wkeys = gkeys[..., 0] | ||
ikeys = gkeys[..., 1] | ||
|
||
# warmup | ||
t1 = time.time() | ||
init_states, tuned_params, _ = _run_warmup(wkeys, init_positions, target_images) | ||
t2 = time.time() | ||
t_warmup = t2 - t1 | ||
tuned_params.pop("max_num_doublings") # set above, not jittable | ||
|
||
# inference | ||
t1 = time.time() | ||
samples, _ = _run_sampling(ikeys, init_states, tuned_params, target_images) | ||
t2 = time.time() | ||
t_sampling = t2 - t1 | ||
|
||
results[n_gals]["t_warmup"] = t_warmup | ||
results[n_gals]["t_sampling"] = t_sampling | ||
results[n_gals]["samples"] = samples | ||
|
||
jnp.save(results) | ||
|
||
|
||
if __name__ == "__main__": | ||
typer.run(main) |