Skip to content

Commit

Permalink
Site updated: 2024-09-04 22:51:39
Browse files Browse the repository at this point in the history
  • Loading branch information
Larry0454 committed Sep 4, 2024
1 parent 3336a32 commit 43e1cec
Show file tree
Hide file tree
Showing 3 changed files with 7 additions and 6 deletions.
2 changes: 1 addition & 1 deletion 2024/09/01/linear_algebra/inner-product-space/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@
<meta property="og:description" content="内积空间 本篇是对高等代数中&quot;内积空间&quot;的定义、性质、定理以及计算方法的速记,不涉及严密的推导证明。 一、\(n\) 维内积与欧氏空间 内积定义:设 \(\alpha&#x3D;(a_1, \dots, a_n)^T, \beta &#x3D; (b_1, \dots, b_n)^T \in \mathbb{R}^n\),定义内积 \((\alpha, \beta) &#x3D; \alpha^T \be">
<meta property="og:locale" content="en_US">
<meta property="article:published_time" content="2024-09-01T15:23:40.000Z">
<meta property="article:modified_time" content="2024-09-04T14:45:19.473Z">
<meta property="article:modified_time" content="2024-09-04T14:46:16.845Z">
<meta property="article:author" content="WangLe">
<meta property="article:tag" content="inner product">
<meta property="article:tag" content="Schmidt orthogonalization">
Expand Down
9 changes: 5 additions & 4 deletions 2024/09/04/linear_algebra/quadratic-form/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@
<meta property="og:description" content="二次型 本篇是对高等代数中&quot;二次型&quot;的定义、定理以及计算方法的速记,不涉及严密的推导证明。 一、二次型的矩阵表示 \(n\) 元变量的二次齐次多项式:\(f(x_1, \dots, x_n) &#x3D; \sum_{i&#x3D;1}^n\sum_{j&#x3D;1}^n a_{ij}x_ix_j\),其中 \(a_{ij} &#x3D; a_{ji}\) 二次型对应的矩阵:由 \(a_{ij} &#x3D; a_{">
<meta property="og:locale" content="en_US">
<meta property="article:published_time" content="2024-09-04T14:39:30.000Z">
<meta property="article:modified_time" content="2024-09-04T14:44:19.897Z">
<meta property="article:modified_time" content="2024-09-04T14:51:12.189Z">
<meta property="article:author" content="WangLe">
<meta property="article:tag" content="diagonalization">
<meta property="article:tag" content="quadratic form">
Expand Down Expand Up @@ -380,8 +380,8 @@ <h3 id="三惯性定理">三、惯性定理</h3>
<strong><u>负平方项数量</u></strong> <span class="math inline">\(q\)</span> 都是<strong>不变</strong></p></li>
<li><p>合同标准型:实对称矩阵 <span class="math inline">\(\text{A}
\simeq \text{diag}(1, \dots, 1; -1, \dots, -1;
\textbf{O})\)</span>其中 <span class="math inline">\(1\)</span>
<span class="math inline">\(p\)</span><span class="math inline">\(-1\)</span> <span class="math inline">\(q\)</span>,称为 <span class="math inline">\(\text{A}\)</span>
\textbf{O})\)</span>一共 <span class="math inline">\(p\)</span>
<span class="math inline">\(1\)</span><span class="math inline">\(q\)</span> <span class="math inline">\(-1\)</span>,称为 <span class="math inline">\(\text{A}\)</span>
<strong>合同标准型</strong></p>
<p>标准型:合同规范型对应的<u>二次方程</u> <span class="math inline">\(y_1^2 + \dots + y_p^2 - y_{p+1}^2 - \dots-
y_{p+q}^2\)</span> 称为 <span class="math inline">\(x^T\text{A}x\)</span>
Expand Down Expand Up @@ -466,7 +466,8 @@ <h3 id="三惯性定理">三、惯性定理</h3>
<li>二次型 <span class="math inline">\(x^T\text{A}x\)</span>
<u>半负定</u> <span class="math inline">\(\Leftrightarrow\)</span>
<u>各阶</u>顺序主子式 <span class="math inline">\(\det (\text{A}_k) \le
0\)</span>,且 $ (_i) = 0 $</li>
0\)</span>,且 <span class="math inline">\(\exists \ \det({\text{A}_i})
= 0\)</span></li>
</ul></li>
</ul>

Expand Down
Loading

0 comments on commit 43e1cec

Please sign in to comment.