This project has been developed during my internship at LISSI. The objective was to create a pipeline for semantic segmentation with python and pytorch.
You can read the documentation here.
git clone https://github.com/MalondaClement/pipeline.git
Before starting training it's possible to change training parameters using ARGS
constructor in train.py
script.
Parameters of the constructor :
- Models name,
- Dataset path,
- Number of classes,
- Type of labels the dataset used ("label", "csv" or "json") (depends of the dataset),
- Batch size,
- Number of epoch.
python3 train.py
pipeline
βββ save
βββ model_name
βΒ Β βββ yyyy-mm-dd-id
βΒ Β β βββ best_weights.pth.tar
βΒ Β β βββ checkpoint.pth.tar
β βΒ Β βββ learning_curves.png
β βββ yyyy-mm-dd-id
βΒ Β β βββ best_weights.pth.tar
βΒ Β β βββ checkpoint.pth.tar
β βΒ Β βββ learning_curves.png
βββ model_name
βββ yyyy-mm-dd-id
βββ best_weights.pth.tar
βββ checkpoint.pth.tar
βββ learning_curves.png
python3 evaluation.py
python3 inference.py