Skip to content

Modular pipeline for semantic segmentation using python and pytorch πŸŒ‡

Notifications You must be signed in to change notification settings

LeoSouquet/pipeline

Β 
Β 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

77 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Pipeline for semantic segmentation

Python PyTorch

This project has been developed during my internship at LISSI. The objective was to create a pipeline for semantic segmentation with python and pytorch.

1. Documentation

You can read the documentation here.

2. How to use the pipeline

git clone https://github.com/MalondaClement/pipeline.git

2.1 Training

2.1.1 Parameters for training

Before starting training it's possible to change training parameters using ARGS constructor in train.py script.

Parameters of the constructor :

  • Models name,
  • Dataset path,
  • Number of classes,
  • Type of labels the dataset used ("label", "csv" or "json") (depends of the dataset),
  • Batch size,
  • Number of epoch.

2.1.2 Start training

python3 train.py

1.3 Save directory

pipeline
└── save
    β”œβ”€β”€ model_name
    β”‚Β Β  β”œβ”€β”€ yyyy-mm-dd-id
    β”‚Β Β  β”‚   β”œβ”€β”€ best_weights.pth.tar
    β”‚Β Β  β”‚   β”œβ”€β”€ checkpoint.pth.tar
    β”‚   β”‚Β Β  └── learning_curves.png
    β”‚   └── yyyy-mm-dd-id
    β”‚Β Β  β”‚   β”œβ”€β”€ best_weights.pth.tar
    β”‚Β Β  β”‚   β”œβ”€β”€ checkpoint.pth.tar
    β”‚   β”‚Β Β  └── learning_curves.png
    └── model_name
        └── yyyy-mm-dd-id
            β”œβ”€β”€ best_weights.pth.tar
            β”œβ”€β”€ checkpoint.pth.tar
            └── learning_curves.png

2.2. Evaluation

python3 evaluation.py

2.3. Inference

python3 inference.py

About

Modular pipeline for semantic segmentation using python and pytorch πŸŒ‡

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%