forked from open-mmlab/mmgeneration
-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Feature]: Add onnx evaluation tool (open-mmlab#279)
* update doc for onnx eval tool * add ort eval tool * add mattor test support * update document * update doc * add format to html table * add onnx wraper test * fix lint * better onnx unit test * skip if torch==1.3.x Co-authored-by: q.yao <[email protected]>
- Loading branch information
1 parent
29d6487
commit 4d2a23d
Showing
7 changed files
with
557 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
from .wrappers import ONNXRuntimeEditing | ||
|
||
__all__ = ['ONNXRuntimeEditing'] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,133 @@ | ||
import os.path as osp | ||
import warnings | ||
|
||
import numpy as np | ||
import onnxruntime as ort | ||
import torch | ||
from torch import nn | ||
|
||
from mmedit.models import BaseMattor, BasicRestorer, build_model | ||
|
||
|
||
def inference_with_session(sess, io_binding, output_names, input_tensor): | ||
device_type = input_tensor.device.type | ||
device_id = input_tensor.device.index | ||
device_id = 0 if device_id is None else device_id | ||
io_binding.bind_input( | ||
name='input', | ||
device_type=device_type, | ||
device_id=device_id, | ||
element_type=np.float32, | ||
shape=input_tensor.shape, | ||
buffer_ptr=input_tensor.data_ptr()) | ||
for name in output_names: | ||
io_binding.bind_output(name) | ||
sess.run_with_iobinding(io_binding) | ||
pred = io_binding.copy_outputs_to_cpu() | ||
return pred | ||
|
||
|
||
class ONNXRuntimeMattor(nn.Module): | ||
|
||
def __init__(self, sess, io_binding, output_names, base_model): | ||
super(ONNXRuntimeMattor, self).__init__() | ||
self.sess = sess | ||
self.io_binding = io_binding | ||
self.output_names = output_names | ||
self.base_model = base_model | ||
|
||
def forward(self, | ||
merged, | ||
trimap, | ||
meta, | ||
test_mode=False, | ||
save_image=False, | ||
save_path=None, | ||
iteration=None): | ||
input_tensor = torch.cat((merged, trimap), 1).contiguous() | ||
pred_alpha = inference_with_session(self.sess, self.io_binding, | ||
self.output_names, input_tensor)[0] | ||
|
||
pred_alpha = pred_alpha.squeeze() | ||
pred_alpha = self.base_model.restore_shape(pred_alpha, meta) | ||
eval_result = self.base_model.evaluate(pred_alpha, meta) | ||
|
||
if save_image: | ||
self.base_model.save_image(pred_alpha, meta, save_path, iteration) | ||
|
||
return {'pred_alpha': pred_alpha, 'eval_result': eval_result} | ||
|
||
|
||
class RestorerGenerator(nn.Module): | ||
|
||
def __init__(self, sess, io_binding, output_names): | ||
super(RestorerGenerator, self).__init__() | ||
self.sess = sess | ||
self.io_binding = io_binding | ||
self.output_names = output_names | ||
|
||
def forward(self, x): | ||
pred = inference_with_session(self.sess, self.io_binding, | ||
self.output_names, x)[0] | ||
pred = torch.from_numpy(pred) | ||
return pred | ||
|
||
|
||
class ONNXRuntimeRestorer(nn.Module): | ||
|
||
def __init__(self, sess, io_binding, output_names, base_model): | ||
super(ONNXRuntimeRestorer, self).__init__() | ||
self.sess = sess | ||
self.io_binding = io_binding | ||
self.output_names = output_names | ||
self.base_model = base_model | ||
restorer_generator = RestorerGenerator(self.sess, self.io_binding, | ||
self.output_names) | ||
base_model.generator = restorer_generator | ||
|
||
def forward(self, lq, gt=None, test_mode=False, **kwargs): | ||
return self.base_model(lq, gt=gt, test_mode=test_mode, **kwargs) | ||
|
||
|
||
class ONNXRuntimeEditing(nn.Module): | ||
|
||
def __init__(self, onnx_file, cfg, device_id): | ||
super(ONNXRuntimeEditing, self).__init__() | ||
ort_custom_op_path = '' | ||
try: | ||
from mmcv.ops import get_onnxruntime_op_path | ||
ort_custom_op_path = get_onnxruntime_op_path() | ||
except (ImportError, ModuleNotFoundError): | ||
warnings.warn('If input model has custom op from mmcv, \ | ||
you may have to build mmcv with ONNXRuntime from source.') | ||
session_options = ort.SessionOptions() | ||
# register custom op for onnxruntime | ||
if osp.exists(ort_custom_op_path): | ||
session_options.register_custom_ops_library(ort_custom_op_path) | ||
sess = ort.InferenceSession(onnx_file, session_options) | ||
providers = ['CPUExecutionProvider'] | ||
options = [{}] | ||
is_cuda_available = ort.get_device() == 'GPU' | ||
if is_cuda_available: | ||
providers.insert(0, 'CUDAExecutionProvider') | ||
options.insert(0, {'device_id': device_id}) | ||
|
||
sess.set_providers(providers, options) | ||
|
||
self.sess = sess | ||
self.device_id = device_id | ||
self.io_binding = sess.io_binding() | ||
self.output_names = [_.name for _ in sess.get_outputs()] | ||
|
||
base_model = build_model( | ||
cfg.model, train_cfg=None, test_cfg=cfg.test_cfg) | ||
|
||
if isinstance(base_model, BaseMattor): | ||
WraperClass = ONNXRuntimeMattor | ||
elif isinstance(base_model, BasicRestorer): | ||
WraperClass = ONNXRuntimeRestorer | ||
self.wraper = WraperClass(self.sess, self.io_binding, | ||
self.output_names, base_model) | ||
|
||
def forward(self, **kwargs): | ||
return self.wraper(**kwargs) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -2,5 +2,6 @@ codecov | |
flake8 | ||
interrogate | ||
isort==4.3.21 | ||
onnxruntime | ||
pytest | ||
pytest-runner |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.