-
Notifications
You must be signed in to change notification settings - Fork 252
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add a few matrix algorithms (SVD, inverse, determinant, solve)
- Loading branch information
1 parent
296b39d
commit 9ef628b
Showing
3 changed files
with
257 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,158 @@ | ||
/******************************************************************** | ||
* Copyright (C) 2015 Liangliang Nan <[email protected]> | ||
* https://3d.bk.tudelft.nl/liangliang/ | ||
* | ||
* This file is part of Easy3D. If it is useful in your research/work, | ||
* I would be grateful if you show your appreciation by citing it: | ||
* ------------------------------------------------------------------ | ||
* Liangliang Nan. | ||
* Easy3D: a lightweight, easy-to-use, and efficient C++ library | ||
* for processing and rendering 3D data. | ||
* Journal of Open Source Software, 6(64), 3255, 2021. | ||
* ------------------------------------------------------------------ | ||
* | ||
* Easy3D is free software; you can redistribute it and/or modify | ||
* it under the terms of the GNU General Public License Version 3 | ||
* as published by the Free Software Foundation. | ||
* | ||
* Easy3D is distributed in the hope that it will be useful, | ||
* but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
* GNU General Public License for more details. | ||
* | ||
* You should have received a copy of the GNU General Public License | ||
* along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
********************************************************************/ | ||
|
||
|
||
#include <easy3d/core/matrix_algo.h> | ||
#include <easy3d/util/logging.h> | ||
|
||
#include <3rd_party/eigen/Eigen/Dense> | ||
|
||
|
||
namespace easy3d { | ||
|
||
|
||
double determinant(const MATRIX &A) { | ||
const int m = A.rows(); | ||
const int n = A.cols(); | ||
Eigen::MatrixXd C(m, n); | ||
for (int i = 0; i < m; ++i) { | ||
for (int j = 0; j < n; ++j) | ||
C(i, j) = A(i, j); | ||
} | ||
return C.determinant(); | ||
} | ||
|
||
|
||
bool inverse(const MATRIX &A, MATRIX &invA) { | ||
const int m = A.rows(); | ||
const int n = A.cols(); | ||
if (m != n) { | ||
LOG(ERROR) << "could not compute inverse (not a square matrix)"; | ||
return false; | ||
} | ||
|
||
Eigen::MatrixXd C(m, n); | ||
for (int i = 0; i < m; ++i) { | ||
for (int j = 0; j < n; ++j) | ||
C(i, j) = A(i, j); | ||
} | ||
|
||
invA.resize(m, n); | ||
const Eigen::MatrixXd invC = C.inverse(); | ||
for (int i = 0; i < m; ++i) { | ||
for (int j = 0; j < n; ++j) | ||
invA(i, j) = invC(i, j); | ||
} | ||
return true; | ||
} | ||
|
||
|
||
MATRIX inverse(const MATRIX &A) { | ||
const int m = A.rows(); | ||
const int n = A.cols(); | ||
if (m != n) { | ||
LOG(ERROR) << "could not compute inverse (not a square matrix)"; | ||
} | ||
MATRIX invA(m, n); | ||
inverse(A, invA); | ||
return invA; | ||
} | ||
|
||
|
||
void svd_decompose(const MATRIX &A, MATRIX &U, MATRIX &S, MATRIX &V) { | ||
const int m = A.rows(); | ||
const int n = A.cols(); | ||
Eigen::MatrixXd C(m, n); | ||
for (int i = 0; i < m; ++i) { | ||
for (int j = 0; j < n; ++j) | ||
C(i, j) = A(i, j); | ||
} | ||
|
||
Eigen::JacobiSVD<Eigen::MatrixXd> svd(C, Eigen::ComputeFullU | Eigen::ComputeFullV); | ||
const Eigen::MatrixXd &eU = svd.matrixU(); | ||
const Eigen::MatrixXd &eV = svd.matrixV(); | ||
const auto &eS = svd.singularValues(); | ||
|
||
for (int i = 0; i < m; ++i) { | ||
for (int j = 0; j < m; ++j) | ||
U(i, j) = eU(i, j); | ||
} | ||
|
||
for (int i = 0; i < n; ++i) { | ||
for (int j = 0; j < n; ++j) | ||
V(i, j) = eV(i, j); | ||
} | ||
|
||
S.load_zero(); | ||
for (int i = 0; i < std::min(m, n); ++i) | ||
S(i, i) = eS(i); | ||
} | ||
|
||
|
||
bool solve_least_squares(const MATRIX &A, const std::vector<double> &b, std::vector<double> &x) { | ||
const int m = A.rows(); | ||
const int n = A.cols(); | ||
if (n > m) { | ||
LOG(ERROR) << "could not solve: A.cols() > A.rows()"; | ||
return false; | ||
} | ||
|
||
if (m != b.size()) { | ||
LOG(ERROR) << "could not solve: sizes of A and b don't match"; | ||
return false; | ||
} | ||
|
||
Eigen::MatrixXd M(m, n); | ||
for (int i = 0; i < m; ++i) { | ||
for (int j = 0; j < n; ++j) | ||
M(i, j) = A(i, j); | ||
} | ||
|
||
Eigen::MatrixXd C(m, 1); | ||
for (int i = 0; i < n; ++i) | ||
C(i, 0) = b[i]; | ||
|
||
// https://eigen.tuxfamily.org/dox/group__LeastSquares.html | ||
#if 0 | ||
// The solve() method in the BDCSVD class can be directly used to solve linear squares systems. It is not | ||
// enough to compute only the singular values (the default for this class); you also need the singular | ||
// vectors but the thin SVD decomposition suffices for computing least squares solutions. | ||
Eigen::MatrixXd X = M.bdcSvd(Eigen::ComputeThinU | Eigen::ComputeThinV).solve(C); | ||
#else | ||
// The solve() method in QR decomposition classes also computes the least squares solution. There are three | ||
// QR decomposition classes: HouseholderQR (no pivoting, so fast but unstable), ColPivHouseholderQR (column | ||
// pivoting, thus a bit slower but more accurate) and FullPivHouseholderQR (full pivoting, so slowest and | ||
// most stable). Here we use the one with column pivoting. | ||
Eigen::MatrixXd X = M.colPivHouseholderQr().solve(C); | ||
#endif | ||
|
||
x.resize(n); | ||
for (int i = 0; i < n; ++i) | ||
x[i] = X(i, 0); | ||
|
||
return true; | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,97 @@ | ||
/******************************************************************** | ||
* Copyright (C) 2015 Liangliang Nan <[email protected]> | ||
* https://3d.bk.tudelft.nl/liangliang/ | ||
* | ||
* This file is part of Easy3D. If it is useful in your research/work, | ||
* I would be grateful if you show your appreciation by citing it: | ||
* ------------------------------------------------------------------ | ||
* Liangliang Nan. | ||
* Easy3D: a lightweight, easy-to-use, and efficient C++ library | ||
* for processing and rendering 3D data. | ||
* Journal of Open Source Software, 6(64), 3255, 2021. | ||
* ------------------------------------------------------------------ | ||
* | ||
* Easy3D is free software; you can redistribute it and/or modify | ||
* it under the terms of the GNU General Public License Version 3 | ||
* as published by the Free Software Foundation. | ||
* | ||
* Easy3D is distributed in the hope that it will be useful, | ||
* but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
* GNU General Public License for more details. | ||
* | ||
* You should have received a copy of the GNU General Public License | ||
* along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
********************************************************************/ | ||
|
||
|
||
#ifndef EASY3D_CORE_MATRIX_ALGO_H | ||
#define EASY3D_CORE_MATRIX_ALGO_H | ||
|
||
#include <easy3d/core/matrix.h> | ||
|
||
|
||
namespace easy3d { | ||
|
||
using MATRIX = easy3d::Matrix<double>; | ||
|
||
/** | ||
* Compute the determinant of a square matrix. | ||
* @param A The input matrix. | ||
* @return The determinant of A. | ||
*/ | ||
double determinant(const MATRIX &A); | ||
|
||
|
||
/** | ||
* Compute the inverse of a square matrix. This is a wrapper around Eigen's inverse function. | ||
* @param A The input matrix. | ||
* @param invA The inverse of A. | ||
* @return false if failed (failure is reported only if the input matrix is not square). | ||
* Upon return, invA carries the inverse of A. | ||
*/ | ||
bool inverse(const MATRIX&A, MATRIX&invA); | ||
|
||
|
||
/** | ||
* Compute the inverse of a square matrix. This is a wrapper around Eigen's inverse function. | ||
* @param A The input matrix. | ||
* @return The inverse of A. | ||
*/ | ||
MATRIX inverse(const MATRIX&A); | ||
|
||
|
||
/** | ||
* Compute the Singular Value Decomposition (SVD) of an M by N matrix. This is a wrapper around Eigen's JacobiSVD. | ||
* | ||
* For an m-by-n matrix A, the singular value decomposition is an m-by-m orthogonal matrix U, an m-by-n diagonal | ||
* matrix S, and an n-by-n orthogonal matrix V so that A = U*S*V^T. | ||
* | ||
* The singular values, s[k] = S[k][k], are sorted in decreasing order, i.e., sigma[i] >= sigma[i+1] for any i. | ||
* | ||
* The singular value decomposition always exists, so the decomposition will never fail. | ||
* | ||
* @param A The input matrix to be decomposed, which can have an arbitrary size. | ||
* @param U The left side M by M orthogonal matrix. | ||
* @param S The middle M by N diagonal matrix, with zero elements outside of its main diagonal. | ||
* @param V The right side N by N orthogonal matrix V. | ||
* | ||
* @return Upon return, U, S, and V carry the result of the SVD decomposition. | ||
* | ||
* @attention V is returned (instead of V^T). | ||
*/ | ||
void svd_decompose(const MATRIX&A, MATRIX&U, MATRIX&S, MATRIX&V); | ||
|
||
|
||
/** | ||
* Solve a linear system (Ax=b) in the least squares sense. | ||
* | ||
* @param A The m-by-n (m >= n) coefficient matrix. | ||
* @param b The right-hand constant vector (m dimensional). | ||
* @param x The result of the system was successfully solved (m dimensional). | ||
* @return false if failed. If true, x carries the least-squares solution to the linear system. | ||
*/ | ||
bool solve_least_squares(const MATRIX&A, const std::vector<double> &b, std::vector<double> &x); | ||
} | ||
|
||
#endif // EASY3D_MATRIX_ALGOTHMS_H |