Are you crazy? Or the network is crazy?
build container with Dockerfile
cd D1
sudo docker build -t jiahong/lp-jupyter -f Dockerfile .
create and mount container to local host
sudo docker run -dit \
--name jupyter-container \
--mount type=bind,source=/home/jiahong/liveProject/Real-time-Anomaly-Detection,target=/src \
-p 8080:8888 \
jiahong/lp-jupyter
check the token
sudo docker exec -it <container> bash
build container with Dockerfile
cd D2
sudo docker build -t jiahong/lp-jupyter:D2 -f Dockerfile .
create and mount container to local host
sudo docker run -dit \
--name jupyter-container \
--mount type=bind,source=/home/jiahong/liveProject/Real-time-Anomaly-Detection,target=/src \
-p 8080:8888 \
jiahong/lp-jupyter:D2
To show the token, first exec into the container
sudo docker exec -it <container> bash
Then,
jupyter notebook list
use Makefile to build and run docker
Makefile looks like:
run:
sudo docker build xxx
sudo docker run xxx
Enter the $pwd and run
make run
Persistant storage of the trained weights
from joblib import dump, load
dump(clf, 'filename.joblib')
load the weights
clf = load('filename.joblib')
Connect 2 matrxi by coloum -> np.c_
a = np.array([[1, 2, 3], [7, 8, 9]])
b = np.arry([[4, 5, 6], [8, 8, 8]])
c = np.c_[a, b]
To draw the decision frontier, enough sample points as the background layer and trained classfier are required. The workflow is first generate dense enough sample points and punch them through the classfier and color them by the classification result.
# set the figure size
plt.rcParams['figure.figsize'] = [15, 15]
# generate dense enough sample points
xx, yy = np.meshgrid(np.linspace(-2, 70, 100), np.linspace(-2, 70, 100))
# punch the sample points through the classfier
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
# 等高线
plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 8), cmap=plt.cm.PuBu, alpha=0.5)
plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='g')
Got fastapi template.
check the current logs in the container
sudo docker logs <container>
Old friend.
Problem: ERROR: Couldn't connect to Docker daemon at http+docker://localhost - is it running?
sudo usermod -aG docker $USER
sudo ln -s /usr/local/bin/docker-compose /usr/bin/docker-compose
sudo service docker restart
Caddy: Panic! casued by Ubutnu 20.04 LTS's resolv.conf. Pass the modified resolv.conf to caddy instance. The modified file is like following:
nameserver 127.0.0.11
options edns0 ndots:0
search internet-only.domain
Rebuild the fastapt imgae with metrics. Update the requirements.txt and rebuid it with makefile:
run:
sudo docker build -t jiahong/lp-fastapi:D6 -f Dockerfile .
Run the docker-compose
ADMIN_USER=admin ADMIN_PASSWORD=admin docker-compose up -d
Stop the current docker-compose
docker-compose down -v
Cannot access the prometheus in the grafana container. The solution is to replace the ip address in host network by the ip in docker network
docker inspect <prometheus container>
# no http://
192.168.144.3:9090