Skip to content

LiteVar/lite_agent_core_dart

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

99 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LiteAgent core for dart

English · 中文

LLM AI Agent multi sessions service.

Features

  • Support pure text agent without JSON Spec.
  • Support OpenAPI/OpenRPC/OpenModbus/OpenTool JSON Spec.
  • Support LLM Function calling to HTTP API/json-rpc 2.0 over HTTP/Modbus and more custom tools.

Usage

Prepare

  1. Some OpenSpec json file, according to /example/json/open*/*.json, which is callable.
  2. Run your tool server, which is described in json file.
  3. Add .env file in the example folder, and add below content in the .env file:
    baseUrl = https://xxx.xxx.com         # LLM API BaseURL
    apiKey = sk-xxxxxxxxxxxxxxxxxxxx      # LLM API ApiKey
  4. Use below method to run agent service.

Method 1(Recommend): AgentService

  • According to /example/service_example
  • Support multi agent session via session id.
  • Support multi task in the same agent, identify different tasks by taskId. After finishing task, task message could be added to session as new task context.
Future<void> main() async {
  CapabilityDto capabilityDto = CapabilityDto(
      llmConfig: _buildLLMConfig(),       // LLM Config
      systemPrompt: _buildSystemPrompt(), // System Prompt
      openSpecList: await _buildOpenSpecList()  // OpenSpec Description String List
  );
  SessionDto sessionDto = await agentService.initChat(
      capabilityDto,
      listen        // Subscribe AgentMessage, Agent chat with User/Client/LLM/Tools Role
  ); // Get Session Id
  
  String prompt = "<USER PROMPT, e.g. call any one tool>";
  UserTaskDto userTaskDto = UserTaskDto(taskId: "<Identify different tasks, NOT more than 36 chars>", contentList: [UserMessageDto(type: UserMessageDtoType.text, message: prompt)]);  // User Content List, support type text/imageUrl
  await agentService.startChat(sessionDto.id, userTaskDto);
}
  • MultiAgent support
Future<void> main() async {
  SessionDto sessionDto1 = await _buildTextAgent();
  SessionDto sessionDto2 = await _buildToolAgent();

  CapabilityDto capabilityDto = CapabilityDto(llmConfig: llmConfig, systemPrompt: systemPrompt,
      sessionList: [sessionDto1, sessionDto2]
  );

  SessionDto sessionDto = await agentService.initChat(capabilityDto, listen);

  UserTaskDto userTaskDto = UserTaskDto(contentList: [UserMessageDto(type: UserMessageDtoType.text, message: prompt)]);
  await agentService.startChat(sessionDto.id, userTaskDto);
}
  • Reflection support
Future<void> main() async {
  CapabilityDto capabilityDto = CapabilityDto(
      llmConfig: _buildLLMConfig(),
      systemPrompt: _buildSystemPrompt(),
      openSpecList: await _buildOpenSpecList(),
      /// Add reflection prompt list here
      toolReflectionList: await _buildToolReflectionList()
  );
  SessionDto sessionDto = await agentService.initChat(capabilityDto, listen);
  String prompt = "<USER PROMPT, e.g. call any one tool>";
  UserTaskDto userTaskDto = UserTaskDto(taskId: "<Identify different tasks, NOT more than 36 chars>", contentList: [UserMessageDto(type: UserMessageDtoType.text, message: prompt)]);
  await agentService.startChat(sessionDto.id, userTaskDto);
}

Method 2: ToolAgent

  • According to /example/agent_example
  • Pure native calling. Support single session.
  • Method 1 AgentService is friendly encapsulation for this.
Future<void> main() async {
  ToolAgent toolAgent = ToolAgent(
      llmRunner: _buildLLMRunner(),
      session: _buildSession(),
      toolRunnerList: await _buildToolRunnerList(),
      systemPrompt: _buildSystemPrompt()
  );
  String prompt = "<USER PROMPT, e.g. call any one tool>";
  toolAgent.userToAgent(taskId: "<Identify different tasks, NOT more than 36 chars>", [Content(type: ContentType.text, message: prompt)]);
}