Skip to content

LiteVar/lite_agent_core_dart_server

Repository files navigation

LiteAgent core Dart Server

English · 中文

LLM AI Agent multi session HTTP/WebSocket service

Feature

Usage

1. Prepare

  1. Some OpenSpec json file, according to /example/json/open*/*.json, which is callable.
  2. Run your tool server, which is described in json file.
  3. Add .env file in the example folder, and add below content in the .env file:
    baseUrl = https://xxx.xxx.com         # LLM API BaseURL
    apiKey = sk-xxxxxxxxxxxxxxxxxxxx      # LLM API ApiKey

2. Develop run server

  1. debug or run mode run /bin/server.dart file main()

3. HTTP/WS API

3.1 HTTP API

  • session control command, include:
    • /version:get version number, to confirm server running
    • /init: initial new session, server return session id
    • /history: get session messages not be cleared
    • /stop: stop session, when current message done, will not run next message
    • /clear: clear session context messages, and close websocket connection
BaseURL
  • http://127.0.0.1:9527/api
[GET] /version
  • Feature:get version number, to confirm server running
  • Request params: empty
  • Response body sample:
    {
        "version": "0.3.0"
    }
[POST] /init
  • Feature: initial new session agent

  • Request body:

    • LLM config: baseUrl, apiKey, model
    • System Prompt: Agent character, ToDo/NotToDo description
    • Tools Description: (Optional) openapi, openrpc, openmodbus Spec. According to third APIs in Spec to set apiKey or not
    • Session List: (Optional) for multi agents supported. Init other agents, and add their sessionIds in this field
    • Timeout:3600 seconds in default. When agent stopped, massages context will be clear
    • Sample:
    {
      "llmConfig": {
          "baseUrl": "<LLM API baseUrl, e.g. https://api.openai.com/v1>",
          "apiKey": "<LLM API apiKey, e.g. sk-xxxxxxxxxx>",
          "model": "<LLM API model name, e.g. gpt-3.5-turbo. And temperature、maxTokens、topP can be changed below >",
          "temperature": 0,
          "maxTokens": 4096,
          "topP": 1
      },
      "systemPrompt": "<System Prompt. LLM character, capabilities, need to help user fixed what problems>",
      "openSpecList": [
          {
              "openSpec": "<(Optional) tool spec json string, support openapi、openmodbus、openrpc>",
              "apiKey": {
                  "type": "<basic or bearer>",
                  "apiKey": "<Third APIs apiKey>"
              },
              "protocol": "Support openapi, openmodbus, jsonrpcHttp"
          },
          {
              "openSpec": "<(Optional) Another spec json string, can be another protocol>",
              "protocol": "Support openapi, openmodbus, jsonrpcHttp"
          }
      ],
      "sessionList": [
          {
              "id": "<Sub Agent sessionId 1>"
          },
          {
              "id": "<Sub Agent sessionId 2>"
          }
      ],
      "timeoutSeconds": 3600
    }
  • Response body:

    • sessionId, will be used as session websocket subscribe, stop and clear operations.
    • Sample:
      {
          "id": "b2ac9280-70d6-4651-bd3a-45eb81cd8c30"
      }
[GET] /history?id=<sessionId>
  • Response body:
    • agent messages context as list
    • Sample:
    [
    {
      "sessionId": "b2ac9280-70d6-4651-bd3a-45eb81cd8c30",
      "from": "system | user | agent | llm | tool",
      "to": "user | agent | llm | tool | client",
      "type": "text | imageUrl | functionCallList | toolReturn | contentList",
      "message": "<need to parse according type>",
      "completions": {
          "tokenUsage": {
            "promptTokens": 100,
            "completionTokens": 522,
            "totalTokens": 622
          },
          "id": "chatcmpl-9bgYkOjpdtLV0o0JugSmnNzGrRFMG",
          "model": "gpt-3.5-turbo"
       },
      "createTime": "2023-06-18T15:45:30.000+0800"
    }
    ]
[GET] /stop?id=<sessionId>
  • Response body:
    • sessionId, to confirm the operation of the session
    • Sample:
    {
        "id": "b2ac9280-70d6-4651-bd3a-45eb81cd8c30"
    }
[GET] /clear?id=<sessionId>
  • Response body:
    • sessionId, to confirm the operation of the session
    • Sample:
    {
        "id": "b2ac9280-70d6-4651-bd3a-45eb81cd8c30"
    }

3.2 WebSocket API

  • Send and subscribe session AgentMessage
Endpoint
  • ws://127.0.0.1:9527/api/chat?id=<sessionId>
3.2.1 alive
  • client(ping) -> server: send "ping" to server
  • client <- server(pong): respond "pong" to client
3.2.2 client send UserMessageDto List to server
  • client([UserMessageDto]) -> server :Wrap and send server
  • Sample:
[
  {
    "type": "text",
    "message": "Get some tool status"
  }
]
{
  "taskId": "Optional. For identify which task AgentMessage from. If NULL, server will create one.",
  "contentList": [
    {
      "type": "text",
      "message": "Get some tool status"
    }
  ]
}
3.2.3 server feedback AgentMessage to client
  • client <- server(AgentMessage) :server will keep sending AgentMessage to client
  • Sample:
{
  "sessionId": "b2ac9280-70d6-4651-bd3a-45eb81cd8c30",
  "taskId": "0b127f1d-4667-4a52-bbcb-0b636f9a471a",
  "from": "system | user | agent | llm | tool",
  "to": "user | agent | llm | tool | client",
  "type": "text | imageUrl | functionCallList | toolReturn | contentList",
  "message": "<need to parse according type>",
  "completions": {
    "tokenUsage": {
      "promptTokens": 100,
      "completionTokens": 522,
      "totalTokens": 622
    },
    "id": "chatcmpl-9bgYkOjpdtLV0o0JugSmnNzGrRFMG",
    "model": "gpt-3.5-turbo"
  },
  "createTime": "2023-06-18T15:45:30.000+0800"
}
  • According type to parse message
    • text、imageUrl:
      • String
      • Sample: "Tool result: PASS"
    • functionCallList:
      • Struct:
      [
          {
              "id":"<LLM respond id in function call>",
              "name":"<function name>",
              "parameters": "<LLM respond parameters in map>"
          }
      ]
      • Sample:
      [
        {
          "id":"call_z5FK2dAfU8TXzn61IJXzRl5I",
          "name":"SomeFunction",
          "parameters": {
            "operation":"result"
          }
        }
      ]
    • toolReturn:
      • Struct:
      {
        "id":"<LLM respond id in function call>",
        "result": "<JSON Map, different tools in defferent result>"
      }
      • Sample:
      {
        "id":"call_z5FK2dAfU8TXzn61IJXzRl5I",
        "result": {
          "statusCode":200,
          "body":"{\"code\":200,\"message\":\"PASS\"}"
        }
      }
    • contentList:
      • Struct:
      [
        {
          "type":"text | imageUrl",
          "message":"String"
        }
      ]
      • Sample:
      [
        {
          "type":"text",
          "message":"What’s in this image?"
        },
        {
          "type":"imageUrl",
          "message":"https://www.xxx.com/xxx.jpg"
        }
      ]
  • When to=Client, message in below status:
    • "[TASK_START]":agent receive user messages, and ready to run task
    • "[TOOLS_START]": ready to call Tools
    • "[TOOLS_DONE]": Tools return finished
    • "[TASK_STOP]":agent receive stop or clear command, stop task
    • "[TASK_DONE]":agent run task finished

3.3 Typical Interaction

[/init request] {llmConfig: ..., systemPrompt:..., openSpecList: [...]}
[/init response SessionId] {id: eccdacc8-a1a8-463f-b0af-7aebc278c842, taskId: 0b127f1d-4667-4a52-bbcb-0b636f9a471a}
[After /chat connect ws, send userTaskDto] {taskId: 0b127f1d-4667-4a52-bbcb-0b636f9a471a, contentList: [{type: text, message: Get some tool status}]}
[ws push] id: eccdacc8-a1a8-463f-b0af-7aebc278c842, taskId: 0b127f1d-4667-4a52-bbcb-0b636f9a471a# 🤖AGENT -> 🔗CLIENT: [text] [TASK_START]
[ws push] id: eccdacc8-a1a8-463f-b0af-7aebc278c842, taskId: 0b127f1d-4667-4a52-bbcb-0b636f9a471a# 👤USER -> 🤖AGENT: [text] Get some tool status
[ws push] id: eccdacc8-a1a8-463f-b0af-7aebc278c842, taskId: 0b127f1d-4667-4a52-bbcb-0b636f9a471a# 🤖AGENT -> 💡LLM: [text] Get some tool status
[ws push] id: eccdacc8-a1a8-463f-b0af-7aebc278c842, taskId: 0b127f1d-4667-4a52-bbcb-0b636f9a471a# 💡LLM -> 🤖AGENT: [functionCallList] [{"id":"call_73xLVZDe70QgLHsURgY5BNT0","name":"SomeFunction","parameters":{"operation":"result"}}]
[ws push] id: eccdacc8-a1a8-463f-b0af-7aebc278c842, taskId: 0b127f1d-4667-4a52-bbcb-0b636f9a471a# 🤖AGENT -> 🔧TOOL: [functionCallList] [{"id":"call_73xLVZDe70QgLHsURgY5BNT0","name":"SomeFunction","parameters":{"operation":"result"}}]
[ws push] id: eccdacc8-a1a8-463f-b0af-7aebc278c842, taskId: 0b127f1d-4667-4a52-bbcb-0b636f9a471a# 🤖AGENT -> 🔗CLIENT: [text] [TOOLS_START]
[ws push] id: eccdacc8-a1a8-463f-b0af-7aebc278c842, taskId: 0b127f1d-4667-4a52-bbcb-0b636f9a471a# 🔧TOOL -> 🤖AGENT: [toolReturn] {"id":"call_73xLVZDe70QgLHsURgY5BNT0","result":{"statusCode":200,"body":"{\"code\":200,\"message\":\"FAIL\"}"}}
[ws push] id: eccdacc8-a1a8-463f-b0af-7aebc278c842, taskId: 0b127f1d-4667-4a52-bbcb-0b636f9a471a# 🤖AGENT -> 💡LLM: [toolReturn] {"id":"call_73xLVZDe70QgLHsURgY5BNT0","result":{"statusCode":200,"body":"{\"code\":200,\"message\":\"FAIL\"}"}}
[ws push] id: eccdacc8-a1a8-463f-b0af-7aebc278c842, taskId: 0b127f1d-4667-4a52-bbcb-0b636f9a471a# 🔧TOOL -> 🤖AGENT: [text] [TOOLS_DONE]
[ws push] id: eccdacc8-a1a8-463f-b0af-7aebc278c842, taskId: 0b127f1d-4667-4a52-bbcb-0b636f9a471a# 🤖AGENT -> 🔗CLIENT: [text] [TOOLS_DONE]
[ws push] id: eccdacc8-a1a8-463f-b0af-7aebc278c842, taskId: 0b127f1d-4667-4a52-bbcb-0b636f9a471a# 💡LLM -> 🤖AGENT: [text] Tool status: FAIL.
[ws push] id: eccdacc8-a1a8-463f-b0af-7aebc278c842, taskId: 0b127f1d-4667-4a52-bbcb-0b636f9a471a# 🤖AGENT -> 👤USER: [text] Tool status: FAIL.
[ws push] id: eccdacc8-a1a8-463f-b0af-7aebc278c842, taskId: 0b127f1d-4667-4a52-bbcb-0b636f9a471a# 🤖AGENT -> 🔗CLIENT: [text] [TASK_DONE]
[ws push] id: eccdacc8-a1a8-463f-b0af-7aebc278c842, taskId: 0b127f1d-4667-4a52-bbcb-0b636f9a471a# 🤖AGENT -> 🔗CLIENT: [text] [TASK_STOP]
[/stop request] {id: eccdacc8-a1a8-463f-b0af-7aebc278c842}
[/clear request] {id: eccdacc8-a1a8-463f-b0af-7aebc278c842}
[ws close] WebSocket connection closed

Build and Run

  1. Build in shell script:
    dart compile exe bin/server.dart -o build/lite_agent_core_dart_server
  2. Then the lite_agent_core_dart_server file will be in build folder
  3. Copy config(within config.json) folder to lite_agent_core_dart_server same folder
  4. Run in shell script:
    ./lite_agent_core_dart_server
  5. Terminal will show:
    INFO: 2024-06-24 14:48:05.862057: PID 34567: [HTTP] Start Server - http://0.0.0.0:9527/api
    
  6. After server running, will create log folder and agent.log file in the folder, to record server running logs.

Docker

  1. Build image, cdto project root directory, then run:
     docker build -t lite_agent_core_dart_server .
  2. Run container:
    docker run -d -p 9527:9527 lite_agent_core_dart_server
    • Or mount config and log folder to update config and get log info
    docker run -d -p 9527:9527 -v ./log:/app/log -v ./config:/app/config  lite_agent_core_dart_server