Make sure you are in the root folder. You should also havepython>=3.6
, tensorflow(-gpu)>=1.12.0
and pytorch>=1.0.0
installed manually.
Before running one_click_ntire19_rsr.sh
for Real Image Super Resolution, set two paths: RSR_TEST_DIR
for testing images and RSR_SAVE_DIR
for saving results.
It's recommended to use absolute path.
RSR_TEST_DIR=/bla/bla/bla
RSR_SAVE_DIR=/bli/bli/bli
. one_click_ntire19_rsr.sh
Before running one_click_ntire19_drn.sh
for sRGB Image Denoising, set two paths: DRN_TEST_MAT
for testing mat file and DRN_SAVE_DIR
for saving results.
It's recommended to use absolute path.
DRN_TEST_MAT=/bla/bla/bla/BenchmarkNoisyBlocksSrgb.mat
DRN_SAVE_DIR=/bli/bli/bli
. one_click_ntire19_drn.sh
You can also do it step-by-step as follows.
-
Install the whole VSR package and its requirements:
git clone https://github.com/LoSealL/VideoSuperResolution -b ntire_2019 && cd VideoSuperResolution pip install -e .
Note that you should pre-install
tensorflow
andpytorch
. -
Download the pre-trained model:
*make sure you are in the root folder.
For Real Image Super-Resolution
python prepare_data.py --filter=rsr -q
For sRGB Real Image Denoising (Track #2: sRGB)
python prepare_data.py --filter=drn -q
Model url for manually download:
-
Prepare testing data:
*make sure you are in the root folder.
For RSR:
You need to crop images into small patches by:
python VSR/Tools/DataProcessing/NTIRE19RSR.py --ref_dir=path/to/test/data/folder --patch_size=768 --stride=760 --save_dir=path/to/saving/folder
For sRGB Denoising:
You need to convert .MAT file to png images by:
python VSR/Tools/DataProcessing/NTIRE19Denoise.py --validation=path/to/.MAT --save_dir=path/to/saving/folder
-
Predicting
*make sure you are in the root folder.
For RSR: Entering VSRTorch folder
cd VSRTorch python eval.py rsr --cuda -t=/path/to/divided/test/images/folder --pth=../Results/rsr/save/rsr_ep2000.pth --ensemble
The output will be saved in
../Results/rsr/<your-image-folder-name>
. To combine them back together:cd .. python VSR/Tools/DataProcessing/NTIRE19RSR.py --ref_dir=path/to/test/data/folder --patch_size=768 --stride=760 --results=Results/rsr/<your-image-folder>/ --save_dir=path/to/saving/folder
Where
--ref_dir
should keep the same as the folder in step 3, it's a reference to know how to combine patches.--patch_size
and--stride
should also keep the same.For sRGB Denoising: Entering VSRTorch folder
cd VSRTorch python eval.py drn --cuda -t=/path/to/divided/test/images/folder --pth=../Results/drn/save/drn_ep2000.pth --output_index=0 --ensemble
The output will be saved in
../Results/drn/<your-image-folder-name>
. To pack them into mat file:cd .. python VSR/Tools/DataProcessing/NTIRE19Denoise.py --results=Results/drn/<your-image-folder-name> --save_dir=path/to/saving/folder
*If OOM happened, try not to enable
--cuda
flag.