Skip to content

LuisBaezN/SimulatedFallsClassification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Classification of Simulated Falls

This repo shows how to use an artifitial neural network to classify falls. In order to accomplish this, we used the data set "Simulated Falls and Daily Living Activities Dataset" provided by Ahmet Turan Özdemir and Billur Barshan.

The relevant information about this data si listed below:

  • 17 Volunteers × Avg. 5 repetitions × 36 Movements
  • 36 Movements including 20 Falls and 16 Daily Living Activities 5 Sensors each includes 3 axis Accelerometer, Gyroscope and Magnetometer.
  • Attribute Information: Xsens MTw Motion Tracking Kit

Technologies

We used the following languages to build the solution:

  • R
  • Python
  • Tensorflow

Further information about the versions is included in the environment file.

Launch

To extract the raw data from the data set an algorithm was implemented in R. This algorithm just extract two classes, and clean the data. So, tu run this example, firs run Fall_Deep.R to extract the data, and then, run ann.py to build and predict.

The architecture of the artifitial neural network is : 300/150/70/1, with a sigmoid function at the end of the net.

About

Classification of simulated falls with tensorflow

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published