-
Notifications
You must be signed in to change notification settings - Fork 67
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Integrate V. Rahmati work on Calicum Imaging to close #18
- Loading branch information
Showing
5 changed files
with
621 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,253 @@ | ||
% This script inverts the FHN model for the given fluorescence trace using | ||
% CaBBI method: [ Rahmati. et al. 2016, PLoS Comput Biol 12(2) ] | ||
% | ||
% To user: | ||
% I) in Step 1, determine the directory to the fluorescence trace (a real row vector); | ||
% as default the code will download and use our published data for CaBBI | ||
% II) in Step 2, determine the sampling rate (Hz) used for recording the fluorescence trace | ||
% III) run the code | ||
% IV) the main outputs of the CaBBI are listed in Step 11. | ||
% | ||
% Further options: | ||
% 1) In Step 10, if necessary, you can change the spike-detection threshold which is used to extract | ||
% spike-times from inferred voltage traces. Such change may increase the spike-detection accuracy. | ||
% 2) In Step 6, if necessary, you can change some internal parameters of the optimization process. | ||
% 3) For further description of the toolbox options, please see: | ||
% http://mbb-team.github.io/VBA-toolbox/wiki/Controlling-the-inversion-using-VBA-options/ | ||
% http://mbb-team.github.io/VBA-toolbox/wiki/VBA-output-structure/ | ||
|
||
|
||
clear all; close all | ||
|
||
%% Step 1. Importing the fluorescence trace | ||
% import the fluorescence trace | ||
dataFolder = [pwd filesep 'Data' filesep]; | ||
addpath('dataFolder'); | ||
Fluor_trace_name = 'fluorescence_data8'; % file name of the fluorescence trace | ||
Fluor_trace_dir = [dataFolder,Fluor_trace_name,'.mat']; | ||
|
||
if exist(Fluor_trace_dir,'file') == 0 % check whether the fluorescence data have been already downloaded | ||
url = 'https://github.com/VahidRahmati/Sample_Data/blob/master/Sample_Data.zip?raw=true'; | ||
urlwrite(url,[pwd filesep 'Data.zip']); % download the fluorescence data | ||
unzip('Data.zip',[pwd filesep 'Data']); | ||
end | ||
|
||
ydata = importdata(Fluor_trace_dir); % the fluorescence trace before pre-processing (a real row vector) | ||
|
||
|
||
%% Step 2. Determining the sampling rate used to record the fluorescence trace | ||
sampling_rate = 22.6; % in [Hz], for our data enter 22.6 | ||
display(['the sampling rate used to record the fluorescence trace is << ',num2str(sampling_rate),' Hz >>']); | ||
|
||
|
||
%% Step 3. Pre-processing | ||
% prparing the data | ||
warning('on') | ||
if ~all(isfinite(ydata)) % check whether there is any NaN and/or Inf in the given fluorescence trace | ||
ydata(~isfinite(ydata)) = []; % reovme the NaN and/or Inf elements from the trace | ||
warning('the given fluorescence traces had some NaN and/or Inf elements, which were removed') | ||
end | ||
|
||
if ~isreal(ydata) % check whether the given fluorescence trace contains any complex number | ||
error('..... the given fluorescence traces contains complex numbers .....') | ||
end | ||
|
||
% normalizing | ||
if size(ydata,1) ~= 1; ydata = ydata'; end % fluorescence trace should be a row vector | ||
ydata = (ydata - mean(ydata))./(max(mean(ydata),1)); % relativer fluorescncee trace | ||
ydata = ydata - median(ydata); % removing the median | ||
|
||
% removing the slow drifts | ||
xdata = 1:length(ydata); % vector of frames | ||
degree = '4'; % Polynomial degree (4 or 3) | ||
ft = fittype( ['poly',degree] ); % define the model to fit the slow drifts | ||
opts = fitoptions( ft ); | ||
opts.Lower = [-Inf -Inf -Inf -Inf -Inf]; | ||
opts.Robust = 'Bisquare'; | ||
opts.Upper = [Inf Inf Inf Inf Inf]; | ||
warning('off') | ||
[fitresult, gof] = fit( xdata', ydata', ft, opts ); % fitting the polynomial model to fluorecence trace | ||
warning('on') | ||
Coeffs = coeffvalues(fitresult); | ||
if degree == '4' | ||
fittedcurve = Coeffs(1)*xdata.^4 + Coeffs(2)*xdata.^3 + Coeffs(3)*xdata.^2 + Coeffs(4)*xdata + Coeffs(5); | ||
elseif degree == '3' | ||
fittedcurve = Coeffs(1)*xdata.^3 + Coeffs(2)*xdata.^2 + Coeffs(3)*xdata.^1 + Coeffs(4); | ||
end | ||
|
||
Fluor_trace = ydata - fittedcurve; % pre-processed fluorescence trace | ||
|
||
|
||
%% Step 4. Scaling the data | ||
scale = 1; % preferably set it a number between e.g. 0.4 and 1 | ||
Fluor_trace = scale* Fluor_trace/max(Fluor_trace); | ||
plot(xdata, scale*ydata/max(ydata) ,'b',xdata, Fluor_trace(1:numel(Fluor_trace)),'r'); | ||
legend('original','pre-processed') | ||
xlabel('time [frame]') | ||
ylabel('a.u.') | ||
title('fluorescence trace') | ||
|
||
|
||
%% Step 6. The generative model | ||
% assigning the generative model | ||
f_fname = @f_CaBBI_FHN; % evolution function | ||
g_fname = @g_CaBBI; % observation function | ||
|
||
% setting the parameters of the FHN model used for inversion | ||
nFrames = numel(Fluor_trace); % number of recording frames | ||
dt = 0.2; % [ms], time step size of the FHN model | ||
inF.dt = dt; | ||
inF.k_Ca0 = 0.002; % scale parameter of [Ca2+] kinetics | ||
TauCa_realTime = 7500; % [ms], the prior for decay time-constant of calcium transients in real time | ||
dt_real = 1000/sampling_rate; % [ms], frame duration (temporal precision) of fluorescence data | ||
inF.Tau_Ca0 = TauCa_realTime*dt/dt_real; % effective prior mean of tau_Ca in inversion; see Eqn. 17 | ||
inG.k_F0 = 5; % scale parameter of the fluorescence observatios | ||
inG.ind = 3; % index of [Ca2+] variable | ||
|
||
|
||
%% Step 6. Setting the internal parameters of the optimization (VB-Laplace) method | ||
options.backwardLag = 2; % lag parameter (selcet either 2 or 3); increasing it e.g. to 3 (or higher) "may" provide more accurate inversions | ||
options.updateHP = 1; % this allows the precison (hyper) parameters to be learnt from data | ||
options.MaxIterInit = 0; | ||
options.MaxIter = 2; % or e.g. 3 % maximum number of optimization iterations; increasing it will lead to a | ||
% complete optimization process, although it may take long time to be converged) | ||
|
||
% options.GnFigs = 0; % set to zero to speed up the inversion | ||
options.DisplayWin = 0; % set to zero to speed up the inversion | ||
options.verbose = 1; % set to zero to speed up the inversion | ||
options.decim = 1; % this determine the micro-time resolution; increasing it e.g. to 2 (or higher) "may" provide more accurate inversions | ||
|
||
|
||
%% Step 7. Assigning the prior densitities: (mu --> mean), (Sigma --> variance) | ||
% prior densities for initial conditons | ||
priors.muX0 = [-1.2; -0.62; 0.05]; % [V(0), W(0), [Ca2+](0)] | ||
priors.SigmaX0(1,1) = 4; | ||
priors.SigmaX0(2,2) = 1; | ||
priors.SigmaX0(3,3) = 25; | ||
|
||
% prior densities for evolution parameters | ||
priors.muTheta = [0; 0; 0]; | ||
priors.SigmaTheta(1,1) = 5; % for X_Tau_Ca | ||
priors.SigmaTheta(2,2) = 100; % for Ca_base | ||
priors.SigmaTheta(3,3) = 5; % for X_k_Ca | ||
|
||
% prior densities for observation parameters | ||
priors.muPhi = [min(Fluor_trace)/2;0]; | ||
priors.SigmaPhi(1,1) = 0.25; % for d_F | ||
priors.SigmaPhi(2,2) = 1; % for X_k_F | ||
|
||
% prior densities for precision parameters: Gamma distributions | ||
priors.a_alpha = 1e0; | ||
priors.b_alpha = 1e0; | ||
priors.a_sigma = 1e0; | ||
priors.b_sigma = 1e0; | ||
|
||
% building the precison matrix for evolution variables | ||
priors.iQx = cell(nFrames,1); | ||
for t = 1:nFrames | ||
dq(1) = (2); % on V | ||
dq(2) = (30); % on W | ||
dq(3) = 10; % on [Ca2+] | ||
priors.iQx{t} = diag(dq); | ||
end | ||
|
||
% building the precision verctor the fluorescence observations | ||
priors.iQy = cell(nFrames,1); | ||
for t=1:nFrames | ||
priors.iQy{t} = 3; % on F | ||
end | ||
|
||
% setting the option structure | ||
options.inF = inF; | ||
options.inG = inG; | ||
options.priors = priors; | ||
|
||
% assigning the dimensions for parameter space | ||
dim.n = 3; % number of neuroal variables | ||
dim.n_phi = 2; % number of observation paramters | ||
dim.n_theta = 3; % number of evolution parameters | ||
|
||
|
||
%% Step 8. Inversion: inverting the FHN model for the given fluorescence trace | ||
[posterior, out] = VBA_NLStateSpaceModel(Fluor_trace,zeros(1,numel(Fluor_trace)),f_fname,g_fname,dim,options); | ||
|
||
|
||
%% Post-processing | ||
%% Step 9. Extracting the estimated Voltage and [Ca2+] traces (i.e. the posterior means) | ||
|
||
V_inferred = posterior.muX(1,1:end); % inferred Voltage (posterior mean) | ||
W_inferred = posterior.muX(2,1:end); % inferred recovery variable (posterior mean) | ||
Ca_inferred = posterior.muX(end,1:end); % inferred [Ca2+] kinetics (posterior mean) | ||
|
||
% Plotting the estimated voltage and [Ca2+] traces | ||
Calcium_basal = 50; % in [nM], the basal [Ca2+] concentration | ||
|
||
% Plot the pre-processed fluorescence trace | ||
figure | ||
subplot(411); plot(1:nFrames, Fluor_trace,'g','LineWidth',2) | ||
legend('fluorescence') | ||
set(gca,'xLim',[0 nFrames]) | ||
axis tight | ||
|
||
% Plot the posterior mean of [Ca2+] trace | ||
subplot(412); plot(1:nFrames, Ca_inferred+Calcium_basal,'r','LineWidth',2) | ||
legend('inferred [Ca2+]') | ||
set(gca,'xLim',[0 nFrames]) | ||
axis tight | ||
|
||
% plot the posterior mean of voltage trace | ||
subplot(413); plot(1:nFrames, V_inferred,'b','LineWidth',2) | ||
set(gca,'xLim',[0 nFrames]) | ||
axis tight | ||
|
||
|
||
%% Step 10. Detecting spike times (or event onsets) from inferred voltage trace | ||
Detection_threshold = 0; % the spike (or event) detection threshold | ||
% (if necessary, change the detection threshold to e.g. -0.2 or 0.5) | ||
idxSpikes = zeros(1,numel(V_inferred)); | ||
count = 1; | ||
for j=1:numel(V_inferred)-1 | ||
|
||
if( V_inferred(j+1)>Detection_threshold && V_inferred(j)<Detection_threshold ) | ||
|
||
if (count > 1) && ( (j-indices(count-1)) > ceil(6/dt) ) | ||
idxSpikes(j) = j; | ||
indices(count) = j; | ||
count = count+1; | ||
end | ||
|
||
if count == 1 | ||
idxSpikes(j) = j; | ||
indices(count) = j; | ||
count = count+1; | ||
end | ||
|
||
end | ||
|
||
end | ||
idxSpikeToShow = idxSpikes; | ||
idxSpikeToShow(idxSpikeToShow~=0) = 1; | ||
|
||
subplot(414); plot(1:nFrames,idxSpikeToShow,'b','LineWidth',2) | ||
legend('inferred spiketimes'); | ||
xlabel('time [frame]') | ||
set(gca,'xLim',[0 nFrames]) | ||
axis tight | ||
|
||
subplot(413); hold on; plot(1:nFrames, Detection_threshold*ones(1,nFrames),'-.k'); | ||
legend('inferred voltage','threshold'); hold off | ||
|
||
% extracted spike (or event) times | ||
SpikeTimes_Frame = idxSpikeToShow(idxSpikeToShow~=0)'; % reconstructed spike (or event) times, in [frame] | ||
SpikeTimes_millisecond = SpikeTimes_Frame*1000/sampling_rate; % reconstructed spike (or event) times, in [ms] | ||
|
||
|
||
%% Step 11. Main outputs of CaBBI method | ||
CaBBI.nFrames = nFrames; % the number of recordings frames of the given fluorescence trace | ||
CaBBI.sampling_rate = sampling_rate; % the sampling rate used for recording the fluorescence trace, in [Hz] | ||
CaBBI.Fluor_trace = Fluor_trace; % the pre-processed fluorescebce trace | ||
CaBBI.V_inferred = V_inferred; % inferred Voltage trace (posterior mean) | ||
CaBBI.W_inferred = W_inferred; % inferred trace of recovery variable (posterior mean) | ||
CaBBI.Ca_inferred = Ca_inferred; % inferred [Ca2+] trace (posterior mean) | ||
CaBBI.SpikeTimes_Frame = SpikeTimes_Frame; % reconstructed spike (or event) times, in [frame] | ||
CaBBI.SpikeTimes_millisecond = SpikeTimes_millisecond; % reconstructed spike (or event) times, in [ms] |
Oops, something went wrong.