Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Create embeddings with OpenAI #6

Merged
merged 6 commits into from
Dec 9, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
66 changes: 55 additions & 11 deletions app.py
Original file line number Diff line number Diff line change
@@ -1,15 +1,36 @@
""" A simple example of Streamlit. """
from datetime import datetime as Date
import textwrap
import os
import tiktoken
import chromadb
from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction
import fitz
import streamlit as st
import openai
from dotenv import load_dotenv
from openai import OpenAI

load_dotenv()

if os.getenv("OPENAI_API_KEY") is None:
st.error("Please set OPENAI_API_KEY environment variable")
st.stop()
else:
openai.api_key = os.getenv("OPENAI_API_KEY")

client = OpenAI()
embedding_function = OpenAIEmbeddingFunction(
api_key=openai.api_key, model_name="text-embedding-ada-002"
)
# from openai import OpenAI

chroma_client = chromadb.PersistentClient(path="tmp/chroma")
chroma_client.heartbeat()

collection = chroma_client.get_or_create_collection("pdf-explainer")
collection = chroma_client.get_or_create_collection(
name="pdf-explainer", embedding_function=embedding_function
)

# Query ChromaDb
query = st.text_input("Query ChromaDb", value="", placeholder="Enter query")
Expand All @@ -25,29 +46,52 @@
+ "..."
+ "**Source:** "
+ results["metadatas"][0][idx]["source"]
+ " **Tokens:** "
+ str(results["metadatas"][0][idx]["num_tokens"])
)


pdf = st.file_uploader("Upload a file", type="pdf")


if st.button("Save"):
if pdf is not None:
with fitz.open(stream=pdf.read(), filetype="pdf") as doc: # open document
text = chr(12).join([page.get_text() for page in doc])
st.write(text[0:200])
if pdf is not None:
with fitz.open(stream=pdf.read(), filetype="pdf") as doc: # open document
text = chr(12).join([page.get_text() for page in doc])
st.write(text[0:200])
if st.button("Add to collection"):
collection.add(
documents=[text],
metadatas=[{"source": pdf.name}],
ids=[pdf.name + str(Date.now())],
)
else:
st.write("Please upload a file of type: pdf")
if st.button("Save chunks"):
with st.spinner("Saving chunks..."):
chunks = textwrap.wrap(text, 24000)
for idx, chunk in enumerate(chunks):
encoding = tiktoken.get_encoding("cl100k_base")
num_tokens = len(encoding.encode(chunk))
response = (
client.embeddings.create(
input=chunk, model="text-embedding-ada-002"
)
.data[0]
.embedding
)
collection.add(
embeddings=[response],
documents=[chunk],
metadatas=[{"source": pdf.name, "num_tokens": num_tokens}],
ids=[pdf.name + str(idx)],
)
else:
st.write("Please upload a file of type: pdf")


if st.button("Chroma data collection"):
st.write(collection)

if st.button("Delete Chroma Collection"):
chroma_client.delete_collection(collection.name)
st.write("Deleted Chroma Collection")
try:
chroma_client.delete_collection(collection.name)
except AttributeError:
st.error("Collection erased.")

2 changes: 1 addition & 1 deletion requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,6 @@ tiktoken
langchain
pymupdf
pypdf
chromadb
chromadb>='0.4.18'
sentence_transformers
streamlit
5 changes: 4 additions & 1 deletion wk_flow_requirements.txt
Original file line number Diff line number Diff line change
@@ -1,4 +1,7 @@
streamlit
pymupdf
openai
tiktoken
pylint
chromadb
langchain
chromadb>='0.4.18'
Loading