The repository currently includes the following models.
Models in published papers
Model | Full name | Paper |
---|---|---|
NRMS | Neural News Recommendation with Multi-Head Self-Attention | https://www.aclweb.org/anthology/D19-1671/ |
Basic setup.
git clone https://github.com/yusanshi/NewsRecommendation
cd NewsRecommendation
pip3 install -r requirements.txt
Download and preprocess the data.
mkdir data && cd data
# Download GloVe pre-trained word embedding
wget https://nlp.stanford.edu/data/glove.840B.300d.zip
sudo apt install unzip
unzip glove.840B.300d.zip -d glove
rm glove.840B.300d.zip
# Download MIND dataset
# By downloading the dataset, you agree to the [Microsoft Research License Terms](https://go.microsoft.com/fwlink/?LinkID=206977). For more detail about the dataset, see https://msnews.github.io/.
# Uncomment the following lines to use the MIND Large dataset (Note MIND Large test set doesn't have labels, see #11)
# wget https://mind201910small.blob.core.windows.net/release/MINDlarge_train.zip https://mind201910small.blob.core.windows.net/release/MINDlarge_dev.zip https://mind201910small.blob.core.windows.net/release/MINDlarge_test.zip
# unzip MINDlarge_train.zip -d train
# unzip MINDlarge_dev.zip -d val
# unzip MINDlarge_test.zip -d test
# rm MINDlarge_*.zip
# Uncomment the following lines to use the MIND Small dataset (Note MIND Small doesn't have a test set, so we just copy the validation set as test set :)
wget https://mind201910small.blob.core.windows.net/release/MINDsmall_train.zip https://mind201910small.blob.core.windows.net/release/MINDsmall_dev.zip
unzip MINDsmall_train.zip -d train
unzip MINDsmall_dev.zip -d val
cp -r val test # MIND Small has no test set :)
rm MINDsmall_*.zip
# Preprocess data into appropriate format
cd ..
python3 src/data_preprocess.py
# Remember you shoud modify `num_*` in `src/config.py` by the output of `src/data_preprocess.py`
Modify src/config.py
to select target model. The configuration file is organized into general part (which is applied to all models) and model-specific part (that some models not have).
vim src/config.py
Run.
# Train and save checkpoint into `checkpoint/{model_name}/` directory
python3 src/train.py
# Load latest checkpoint and evaluate on the test set
python3 src/evaluate.py
You can visualize metrics with TensorBoard.
tensorboard --logdir=runs
# or
tensorboard --logdir=runs/{model_name}
# for a specific model
Tip: by adding
REMARK
environment variable, you can make the runs name in TensorBoard more meaningful. For example,REMARK=num-filters-300-window-size-5 python3 src/train.py
.
Model | AUC | MRR | nDCG@5 | nDCG@10 | Remark |
---|---|---|---|---|---|
baseline | 0.6253 | 0.2823 | 0.3051 | 0.3731 | |
+SGD | 0.5188 | 0.2148 | 0.2250 | 0.2905 | |
+AdamW | 0.6298 | 0.2841 | 0.3091 | 0.3765 |
Model | AUC | MRR | nDCG@5 | nDCG@10 | Remark |
---|---|---|---|---|---|
baseline | 0.6253 | 0.2823 | 0.3051 | 0.3731 | |
+BN | 0.5252 | 0.2476 | 0.2565 | 0.3181 | |
+GN | 0.6323 | 0.2884 | 0.3122 | 0.3795 | |
+IN | 0.6321 | 0.2847 | 0.3101 | 0.3785 | |
+LN | 0.6404 | 0.2905 | 0.3172 | 0.3835 |
Model | AUC | MRR | nDCG@5 | nDCG@10 | Remark |
---|---|---|---|---|---|
baseline | 0.6253 | 0.2823 | 0.3051 | 0.3731 | |
+LN +AdamW + Cosine decay | 0.6421 | 0.2960 | 0.3239 | 0.3890 |
cd ..
python3 src/web.py
@misc{yusanshi2020news-recommendation,
title={news-recommendation},
author={yusanshi},
publisher = {GitHub},
journal = {GitHub repository},
howpublished={\url{https://github.com/yusanshi/news-recommendation}},
year={2020}
}
@misc{Maguire2022news-recommendation,
title={news-recommendation-system},
author={Maguire},
publisher = {GitHub},
journal = {GitHub repository},
howpublished={\url{https://github.com/Maguire1999/NewsRecommendationSystem}},
year={2022}
}