Skip to content

Latest commit

 

History

History
57 lines (49 loc) · 2.66 KB

README.md

File metadata and controls

57 lines (49 loc) · 2.66 KB

AIM 2020 Real Image Super-Resolution Challenge (Track1, Track2, Track3)

Requirements

  • pytorch-gpu
  • numpy
  • math
  • os
  • argparse
  • copy
  • queue
  • threading
  • importlib
  • time
  • cv2
  • torch.nn
  • torch.optim
  • torch.nn.functional

Folders

  • code

    • dataloaders: folder containing dataloader
      • dataloader_multiscale.py: for loading data
    • utils: folder containing utlity
      • image_utils.py: some functions for processing data
    • model: folder which contain models
      • base.py: base for model
      • mdsr_mod5: our model
    • train_queued.py: for training models
    • get_sr.py: for acquring result images
  • data: RealSR testing data for each track

    • TestX2: test for track 1
    • TestX3: test for track 2
    • TestX4: test for track 3
  • experiments: trained model checkpoint for each track

    • Track1
    • Track2
    • Track3

How To Use

  1. --cuda_device=0: It is device selection in case of multiple GPU. If you have only one GPU, just set it to 0.
  2. --input_path, --output_path, --restore_path: you have to change 'your_directory' part in each argument to suit your environment.
  3. After modifying above three arguemtns, run the following commands for each Track. Then, the result images will be created. (ex, challenge\experiments\Track1\results)

Track 1:

python get_sr.py --model=mdsr_mod5 --restore_path=your_directory\challenge\experiments\Track_1\model_200000.pth --input_path=your_directory\challenge\data\TestLRX2\TestLR --scale=2 --edsr_res_blocks=80 --output_path=your_directory\challenge\experiments\Track_1\results --cuda_device=0 --chop_forward

Track 2:

python get_sr.py --model=mdsr_mod5 --restore_path=your_directory\challenge\experiments\Track_2\model_200000.pth --input_path=your_directory\challenge\data\TestLRX3\TestLR --scale=3 --edsr_res_blocks=80 --output_path=your_directory\challenge\experiments\Track_2\results --cuda_device=0 --self_ensemble --chop_forward

Track 3:

python get_sr.py --model=mdsr_mod5 --restore_path=your_directory\challenge\experiments\Track_3\model_200000.pth --input_path=your_directory\challenge\data\TestLRX4\TestLR --scale=4 --edsr_res_blocks=80 --output_path=your_directory\challenge\experiments\Track_3\results --cuda_device=0 --self_ensemble --chop_forward