- paper: Wei, Pengxu, et al. "AIM 2020 challenge on real image super-resolution: Methods and results." Computer Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16. Springer International Publishing, 2020.
- Keon-Hee Ahn, MCML group, Yonsei University, South Korea (As undergraduate reaserach intern)
- email: [email protected]
- If you have any questions, please feel free to contact me through the above email
- pytorch-gpu
- numpy
- math
- os
- argparse
- copy
- queue
- threading
- importlib
- time
- cv2
- torch.nn
- torch.optim
- torch.nn.functional
-
code
- dataloaders: folder containing dataloader
- dataloader_multiscale.py: for loading data
- utils: folder containing utlity
- image_utils.py: some functions for processing data
- model: folder which contain models
- base.py: base for model
- mdsr_mod5: our model
- train_queued.py: for training models
- get_sr.py: for acquring result images
- dataloaders: folder containing dataloader
-
data: RealSR testing data for each track
- TestX2: test for track 1
- TestX3: test for track 2
- TestX4: test for track 3
-
experiments: trained model checkpoint for each track
- Track1
- Track2
- Track3
- --cuda_device=0: It is device selection in case of multiple GPU. If you have only one GPU, just set it to 0.
- --input_path, --output_path, --restore_path: you have to change 'your_directory' part in each argument to suit your environment.
- After modifying above three arguemtns, run the following commands for each Track. Then, the result images will be created. (ex, challenge\experiments\Track1\results)
python get_sr.py --model=mdsr_mod5 --restore_path=your_directory\challenge\experiments\Track_1\model_200000.pth --input_path=your_directory\challenge\data\TestLRX2\TestLR --scale=2 --edsr_res_blocks=80 --output_path=your_directory\challenge\experiments\Track_1\results --cuda_device=0 --chop_forward
python get_sr.py --model=mdsr_mod5 --restore_path=your_directory\challenge\experiments\Track_2\model_200000.pth --input_path=your_directory\challenge\data\TestLRX3\TestLR --scale=3 --edsr_res_blocks=80 --output_path=your_directory\challenge\experiments\Track_2\results --cuda_device=0 --self_ensemble --chop_forward
python get_sr.py --model=mdsr_mod5 --restore_path=your_directory\challenge\experiments\Track_3\model_200000.pth --input_path=your_directory\challenge\data\TestLRX4\TestLR --scale=4 --edsr_res_blocks=80 --output_path=your_directory\challenge\experiments\Track_3\results --cuda_device=0 --self_ensemble --chop_forward