-
Notifications
You must be signed in to change notification settings - Fork 2
/
tbm2_log.py
239 lines (165 loc) · 7.3 KB
/
tbm2_log.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import numpy as np
import math
import Bio.PDB as pdb
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
def distance(point1, point2):
squareDistance = np.sum((point1 - point2)**2, axis=0)
sqrtDistance = np.sqrt(squareDistance)
return sqrtDistance
def pdf(tarDistance, temDistance, sigma):
prob = 1/(sigma * np.sqrt(2*math.pi)) * np.exp(-1/2*((tarDistance - temDistance)/sigma)**2)
return prob
def objProb(tarPoints, temPoints, temW, sigma):
# Get number of points, and number of templates
nTarPts = tarPoints.shape[0]
nTemplates = temPoints.shape[0]
nTemPts = temPoints.shape[1]
# Array to store distances
tarDisArray = np.zeros((nTarPts, nTarPts))
temDisArray = np.zeros((nTemplates, nTemPts, nTemPts))
cacheArray = np.zeros((nTemplates, nTemPts, nTemPts))
# Array to store pdf
pdfArray = np.zeros((nTemplates, nTarPts, nTarPts))
# Compute distances between Target Atoms, and between Template Atoms
for i in range(0,nTarPts-1):
for j in range(i+1,nTarPts):
tarDisArray[i,j] = distance(tarPoints[i,:], tarPoints[j,:])
# tarDisArray[j,i] = tarDisArray[i,j]
for k in range(0,nTemplates):
for i in range(0,nTemPts-1):
for j in range(i+1,nTemPts):
temDisArray[k,i,j] = distance(temPoints[k,i,:], temPoints[k,j,:])
# temDisArray[k,j,i] = temDisArray[k,i,j]
# Compute pdf
for k in range(0,nTemplates):
for i in range(0,nTarPts-1):
for j in range(i+1,nTarPts):
pdfArray[k,i,j] = temW[k] * pdf(tarDisArray[i,j], temDisArray[k,i,j], sigma)
# pdfArray[k,j,i] = pdfArray[k,i,j]
cacheArray[k,i,j] = pdfArray[k,i,j] * (tarDisArray[i,j] - temDisArray[k,i,j]) / (sigma**2) # for gradient calculation
# Sum pdf over k templates for each distance:
sumPdf = np.sum(pdfArray, axis=0)
sumCache = np.sum(cacheArray, axis=0) # for gradient calculation
# Multiply over half of sumPdf (not include diagonal):
upperPdf_noDiag = np.triu(sumPdf, k=1)
productPdf = np.prod(upperPdf_noDiag[upperPdf_noDiag > 0])
# Log
# logPdf = - np.log(productPdf)
logArray = -np.log(upperPdf_noDiag[upperPdf_noDiag > 0])
logPdf = np.sum(logArray)
print('logPdf: ', logPdf)
return tarDisArray, temDisArray, pdfArray, sumPdf, sumCache, productPdf, logPdf
def gradient(tarPoints, tarDisArray, sumPdf, sumCache):
nTar = tarDisArray.shape[0]
gradFd = np.zeros(tarDisArray.shape)
# gradFx = np.zeros((nTar,1))
# gradFy = np.zeros((nTar,1))
# gradFz = np.zeros((nTar,1))
gradFpoints = np.zeros((nTar,3))
gradFd = (1/sumPdf) * sumCache
# print('gradFd: ')
# print(gradFd)
for i in range(0,nTar):
if (i < nTar-1):
# gradFx[i] = gradFd[i,i+1] * (tarPoints[i,0] - tarPoints[i+1,0])/tarDisArray[i,i+1]
# gradFy[i] = gradFd[i,i+1] * (tarPoints[i,1] - tarPoints[i+1,1])/tarDisArray[i,i+1]
# gradFz[i] = gradFd[i,i+1] * (tarPoints[i,2] - tarPoints[i+1,2])/tarDisArray[i,i+1]
gradFpoints[i] = gradFd[i,i+1] * (tarPoints[i] - tarPoints[i+1])/tarDisArray[i,i+1]
else:
# gradFx[i] = gradFd[1,i] * (tarPoints[i,0] - tarPoints[1,0])/tarDisArray[1,i]
# gradFy[i] = gradFd[1,i] * (tarPoints[i,1] - tarPoints[1,1])/tarDisArray[1,i]
# gradFz[i] = gradFd[1,i] * (tarPoints[i,2] - tarPoints[1,2])/tarDisArray[1,i]
gradFpoints[i] = gradFd[1,i] * (tarPoints[i] - tarPoints[1])/tarDisArray[1,i]
# gradFpoints = np.hstack((gradFx, gradFy, gradFz))
return gradFd, gradFpoints
def gradDescent(tarPoints0, temPoints, temW, sigma, alpha=0.05, tolerance=10**(-5), maxiter=200):
tarPoints = tarPoints0
tarDisArray, temDisArray, pdfArray, sumPdf, sumCache, productPdf, logPdf = objProb(tarPoints, temPoints, temW, sigma)
iter = 0
error = 0.5
while (iter < maxiter) and (error > tolerance):
gradFd, gradFpoints = gradient(tarPoints, tarDisArray, sumPdf, sumCache)
tarPoints += - alpha*gradFpoints
new_tarDisArray, new_temDisArray, new_pdfArray, new_sumPdf, new_sumCache, new_productPdf, new_logPdf = objProb(tarPoints, temPoints, temW, sigma)
error = abs(logPdf - new_logPdf)
if error < tolerance:
return tarPoints
else:
tarDisArray = new_tarDisArray
sumPdf = new_sumPdf
sumCache = new_sumCache
logPdf = new_logPdf
iter += 1
print('iteration: ', iter, ' error: ', error)
return tarPoints
def getTemplate(temFile):
parser = pdb.PDBParser()
struct = parser.get_structure('template', temFile)
temPoints = list()
for model in struct:
for chain in model:
for res in chain:
for atom in res:
if (atom.name == 'CA'):
vector = atom.get_vector()
temPoints.append(list(vector))
return np.array(temPoints)
def writePoints(inFile, outFile, optimalPoints):
parser = pdb.PDBParser()
struct = parser.get_structure('target', inFile)
optimalPoints = np.array(optimalPoints)
i = 0
for model in struct:
for chain in model:
for res in chain:
for atom in res:
if (atom.name == 'CA'):
atom.coord = optimalPoints[i,:]
i += 1
io = pdb.PDBIO()
io.set_structure(struct)
io.save(outFile)
return
def showProtein():
return
def showFunction():
return
def main():
nseed = 1
np.random.seed(nseed)
# tarPoints = np.random.randint(30, size=(5,3))/30.0
# temPoints = np.random.randint(30, size=(2,5,3))/30.0
tarFile = '1fdx.B99990001.pdb'
temFile = '5fd1.pdb'
outFile = 'new_out.pdb'
temPoints0 = getTemplate(temFile)
tem1 = temPoints0[0:8, :]
tem2 = temPoints0[10:28, :]
tem3 = temPoints0[30:58, :]
temPoints = np.vstack((tem1, tem2, tem3))
tarPoints = temPoints - np.random.rand(temPoints.shape[0], temPoints.shape[1])*10
temPoints = np.reshape(temPoints, (1,temPoints.shape[0], temPoints.shape[1]))
# tarPoints = np.random.randint(15, 20, size=(temPoints.shape[1],3))/1.0
# tarPoints = tarPoints.astype(float)
# temPoints = temPoints.astype(float)
# temW = [0.4, 0.6]
temW = [1.0]
sigma = 0.5
optimalTarget = gradDescent(tarPoints, temPoints, temW, sigma, alpha=0.01, tolerance=10**(-5), maxiter=1000)
print('optimalTarget: \n', optimalTarget)
# %% VISUALIZE
mpl.rcParams['legend.fontsize'] = 10
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot(temPoints[0,:,0], temPoints[0,:,1], temPoints[0,:,2], label='template')
ax.plot(optimalTarget[:,0], optimalTarget[:,1], optimalTarget[:,2], label='target approximation')
ax.legend(['Template','Target Fit'])
fig.savefig('new_out.png')
plt.show()
writePoints(tarFile, outFile, optimalTarget)
return
if __name__ == '__main__':
main()