-
Notifications
You must be signed in to change notification settings - Fork 100
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #6 from Media-Smart/transformer
support transformer
- Loading branch information
Showing
66 changed files
with
1,959 additions
and
171 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,307 @@ | ||
# work dir | ||
root_workdir = 'workdir/' | ||
|
||
# seed | ||
seed = 1111 | ||
|
||
# 1. logging | ||
logger = dict( | ||
handlers=( | ||
dict(type='StreamHandler', level='INFO'), | ||
dict(type='FileHandler', level='INFO'), | ||
), | ||
) | ||
|
||
# 2. data | ||
batch_size = 4 | ||
mean, std = 0.5, 0.5 # normalize mean and std | ||
size = (32, 100) | ||
batch_max_length = 25 | ||
fill = 0 | ||
mode = 'bilinear' | ||
data_filter_off = False | ||
train_sensitive = True | ||
train_character = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~' # need character | ||
test_sensitive = False | ||
test_character = '0123456789abcdefghijklmnopqrstuvwxyz' | ||
|
||
# dataset params | ||
train_dataset_params = dict( | ||
batch_max_length=batch_max_length, | ||
data_filter_off=data_filter_off, | ||
character=train_character, | ||
) | ||
test_dataset_params = dict( | ||
batch_max_length=batch_max_length, | ||
data_filter_off=data_filter_off, | ||
character=test_character, | ||
) | ||
|
||
data_root = './data/data_lmdb_release/' | ||
|
||
# train data | ||
train_root = data_root + 'training/' | ||
## MJ dataset | ||
train_root_mj = train_root + 'MJ/' | ||
mj_folder_names = ['/MJ_test', 'MJ_valid', 'MJ_train'] | ||
## ST dataset | ||
train_root_st = train_root + 'ST/' | ||
|
||
train_dataset_mj = [dict(type='LmdbDataset', root=train_root_mj + folder_name) for folder_name in mj_folder_names] | ||
train_dataset_st = [dict(type='LmdbDataset', root=train_root_st)] | ||
|
||
# valid | ||
valid_root = data_root + 'validation/' | ||
valid_dataset = [dict(type='LmdbDataset', root=valid_root, **test_dataset_params)] | ||
|
||
# test | ||
test_root = data_root + 'evaluation/' | ||
test_folder_names = ['CUTE80', 'IC03_867', 'IC13_1015', 'IC15_2077', 'IIIT5k_3000', 'SVT', 'SVTP'] | ||
test_dataset = [dict(type='LmdbDataset', root=test_root + folder_name, **test_dataset_params) for folder_name in | ||
test_folder_names] | ||
|
||
# transforms | ||
train_transforms = [ | ||
dict(type='Sensitive', sensitive=train_sensitive), | ||
dict(type='ColorToGray'), | ||
dict(type='RandomNormalRotation', mean=0, std=34, expand=True, center=None, fill=fill, mode=mode, p=0.5), | ||
dict(type='Resize', size=size), | ||
dict(type='ToTensor'), | ||
dict(type='Normalize', mean=mean, std=std), | ||
] | ||
test_transforms = [ | ||
dict(type='Sensitive', sensitive=test_sensitive), | ||
dict(type='ColorToGray'), | ||
dict(type='Resize', size=size), | ||
dict(type='ToTensor'), | ||
dict(type='Normalize', mean=mean, std=std), | ||
] | ||
|
||
data = dict( | ||
train=dict( | ||
transforms=train_transforms, | ||
datasets=[ | ||
dict( | ||
type='ConcatDatasets', | ||
datasets=train_dataset_mj, | ||
**train_dataset_params, | ||
), | ||
dict( | ||
type='ConcatDatasets', | ||
datasets=train_dataset_st, | ||
**train_dataset_params, | ||
), | ||
], | ||
loader=dict( | ||
type='BatchBalanceDataloader', | ||
batch_size=batch_size, | ||
each_batch_ratio=[0.5, 0.5], | ||
each_usage=[1.0, 1.0], | ||
shuffle=True, | ||
), | ||
), | ||
val=dict( | ||
transforms=test_transforms, | ||
datasets=valid_dataset, | ||
loader=dict( | ||
type='TestDataloader', | ||
batch_size=batch_size, | ||
num_workers=4, | ||
shuffle=False, | ||
), | ||
), | ||
test=dict( | ||
transforms=test_transforms, | ||
datasets=test_dataset, | ||
loader=dict( | ||
type='TestDataloader', | ||
batch_size=batch_size, | ||
num_workers=4, | ||
shuffle=False, | ||
), | ||
), | ||
) | ||
|
||
test_cfg = dict( | ||
sensitive=test_sensitive, | ||
character=test_character, | ||
) | ||
|
||
# 3. converter | ||
converter = dict( | ||
type='SATRNConverter', | ||
character=train_character, | ||
batch_max_length=batch_max_length, | ||
go_last=True, | ||
) | ||
|
||
# 4. model | ||
dropout = 0.1 | ||
n_e = 12 | ||
n_d = 6 | ||
hidden_dim = 512 | ||
n_head = 8 | ||
batch_norm = dict(type='BN') | ||
layer_norm = dict(type='LayerNorm', normalized_shape=hidden_dim) | ||
num_class = len(train_character) + 1 | ||
num_steps = batch_max_length + 1 | ||
model = dict( | ||
type='GModel', | ||
need_text=True, | ||
body=dict( | ||
type='GBody', | ||
pipelines=[ | ||
dict( | ||
type='FeatureExtractorComponent', | ||
from_layer='input', | ||
to_layer='cnn_feat', | ||
arch=dict( | ||
encoder=dict( | ||
backbone=dict( | ||
type='GResNet', | ||
layers=[ | ||
('conv', dict(type='ConvModule', in_channels=1, out_channels=64, kernel_size=3, | ||
stride=1, padding=1, norm_cfg=batch_norm)), | ||
('conv', dict(type='ConvModule', in_channels=64, out_channels=128, kernel_size=3, | ||
stride=1, padding=1, norm_cfg=batch_norm)), | ||
('pool', dict(type='MaxPool2d', kernel_size=2, stride=2, padding=0)), | ||
('conv', dict(type='ConvModule', in_channels=128, out_channels=256, kernel_size=3, | ||
stride=1, padding=1, norm_cfg=batch_norm)), | ||
('conv', dict(type='ConvModule', in_channels=256, out_channels=512, kernel_size=3, | ||
stride=1, padding=1, norm_cfg=batch_norm)), | ||
('pool', dict(type='MaxPool2d', kernel_size=2, stride=2, padding=0)), | ||
], | ||
), | ||
), | ||
collect=dict(type='CollectBlock', from_layer='c2'), | ||
), | ||
), | ||
dict( | ||
type='SequenceEncoderComponent', | ||
from_layer='cnn_feat', | ||
to_layer='src', | ||
arch=dict( | ||
type='TransformerEncoder', | ||
position_encoder=dict( | ||
type='Adaptive2DPositionEncoder', | ||
in_channels=hidden_dim, | ||
max_h=100, | ||
max_w=100, | ||
dropout=dropout, | ||
), | ||
encoder_layer=dict( | ||
type='TransformerEncoderLayer2D', | ||
attention=dict( | ||
type='MultiHeadAttention', | ||
in_channels=hidden_dim, | ||
k_channels=hidden_dim, | ||
v_channels=hidden_dim, | ||
n_head=n_head, | ||
dropout=dropout, | ||
), | ||
attention_norm=layer_norm, | ||
feedforward=dict( | ||
type='Feedforward', | ||
layers=[ | ||
dict(type='ConvModule', in_channels=hidden_dim, out_channels=hidden_dim*4, kernel_size=3, padding=1, | ||
activation='relu', dropout=dropout), | ||
dict(type='ConvModule', in_channels=hidden_dim*4, out_channels=hidden_dim, kernel_size=3, padding=1, | ||
activation=None, dropout=dropout), | ||
] | ||
), | ||
feedforward_norm=layer_norm, | ||
), | ||
num_layers=n_e, | ||
), | ||
), | ||
], | ||
), | ||
head=dict( | ||
type='TransformerHead', | ||
src_from='src', | ||
decoder=dict( | ||
type='TransformerDecoder', | ||
position_encoder=dict( | ||
type='PositionEncoder1D', | ||
in_channels=hidden_dim, | ||
max_len=100, | ||
dropout=dropout, | ||
), | ||
decoder_layer=dict( | ||
type='TransformerDecoderLayer1D', | ||
self_attention=dict( | ||
type='MultiHeadAttention', | ||
in_channels=hidden_dim, | ||
k_channels=hidden_dim, | ||
v_channels=hidden_dim, | ||
n_head=n_head, | ||
dropout=dropout, | ||
), | ||
self_attention_norm=layer_norm, | ||
attention=dict( | ||
type='MultiHeadAttention', | ||
in_channels=hidden_dim, | ||
k_channels=hidden_dim, | ||
v_channels=hidden_dim, | ||
n_head=n_head, | ||
dropout=dropout, | ||
), | ||
attention_norm=layer_norm, | ||
feedforward=dict( | ||
type='Feedforward', | ||
layers=[ | ||
dict(type='FCModule', in_channels=hidden_dim, out_channels=hidden_dim * 4, bias=True, | ||
activation='relu', | ||
dropout=dropout), | ||
dict(type='FCModule', in_channels=hidden_dim * 4, out_channels=hidden_dim, bias=True, | ||
activation=None, | ||
dropout=dropout), | ||
] | ||
), | ||
feedforward_norm=layer_norm, | ||
), | ||
num_layers=n_d, | ||
), | ||
generator=dict( | ||
type='Linear', | ||
in_features=hidden_dim, | ||
out_features=num_class, | ||
), | ||
embedding=dict( | ||
type='Embedding', | ||
num_embeddings=num_class + 1, | ||
embedding_dim=hidden_dim, | ||
padding_idx=num_class, | ||
), | ||
num_steps=num_steps, | ||
pad_id=num_class, | ||
), | ||
) | ||
|
||
## 4.1 resume | ||
resume = None | ||
|
||
# 5. criterion | ||
criterion = dict(type='CrossEntropyLoss', ignore_index=num_class) | ||
|
||
# 6. optim | ||
optimizer = dict(type='Adam', lr=1e-4) | ||
|
||
# 7. lr scheduler | ||
epochs = 6 | ||
decay_epochs = [2,4] | ||
niter_per_epoch = int(55000 * 256 / batch_size) | ||
milestones = [niter_per_epoch * epoch for epoch in decay_epochs] | ||
max_iterations = epochs * niter_per_epoch | ||
lr_scheduler = dict(type='StepLR', niter_per_epoch=niter_per_epoch, max_epochs=epochs, milestones=milestones) | ||
|
||
# 8. runner | ||
runner = dict( | ||
type='Runner', | ||
iterations=max_iterations, | ||
trainval_ratio=2000, | ||
snapshot_interval=20000, | ||
) | ||
|
||
# 9. device | ||
gpu_id = '0' |
Oops, something went wrong.