-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAnalyzeEducageTableVocalizations
252 lines (201 loc) · 7.19 KB
/
AnalyzeEducageTableVocalizations
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
load('C:\Users\owner\Dropbox\lab\progs\Maor et al\Educage\EducageTableVocalizations.mat')
mice=unique(EducageTable.mouse_num);
for nn=1:length(mice)
micename{nn,1}= EducageTable.mouse_name(find(EducageTable.mouse_num==mice(nn),1,'first'),:);
end
%%
%d prime of all mice in first level
numtrials=1000;
alldp = NaN(50);
numS=40
binsize=20;
clear sTR
clear sNTR
sTR=nan(length(mice),numtrials/binsize);
sNTR=nan(length(mice),numtrials/binsize);
clear m
AllSpikeind=nan(1,40)
AllmaxD=nan(1,40)
for n=1:length(mice)
clear dp
score{n}=EducageTable.score(EducageTable.mouse_num==n);
Level{n}=EducageTable.level(EducageTable.mouse_num==n);
allL=unique(EducageTable.level(EducageTable.mouse_num==n));
levels2work=1;
chosen_trials=find(Level{n}==levels2work,numtrials,'first');
if isempty(chosen_trials)
continue
end
biningL=Level{n}(chosen_trials);
bining=zeros(1,length(biningL));
binind=1:binsize:length(bining);
for b=1:length(binind)-1
bining(binind(b):end)=bining(binind(b):end)+1;
end
bining=bining';
[hit, miss,fa,cr,trL,ntrL,newcorrect,correct]=find_ratios4(bining,score{n}(chosen_trials));
dp=find_dprime(trL,ntrL,binsize);
thresh=1;
spike_thresh = find((dp(2:end-1)>thresh))+1;
spike_max= find(dp(spike_thresh)>dp(spike_thresh-1) & dp(spike_thresh)>dp(spike_thresh+1),1,'first');
spike_ind=spike_thresh(spike_max);
[dMax, dMaxInd]=max(dp);
alldp(n,1:length(dp))=dp;
if ~isempty(spike_ind)
AllSpikeind(n)=spike_ind;
end
AllmaxD(n)=dMax;
m(n)=(dp(spike_ind)-dp(1))/(spike_ind*binsize);
set(gca,'fontsize',12,'box','off','ytick',[0:3])
end
figure('name','Fig. S4b')
hold all
plot(smooth(nanmean(alldp(:,1:numS)),1),'color','k','linewidth',2)
errorbar(nanmean(alldp(:,1:numS)),nanstd(alldp(:,1:numS))/sqrt(length(mice)),'color','k','linewidth',2)
set(gca,'fontsize',12,'box','off','xtick',[])
xlim([0 numS])
ylim([-1 3.5])
%%
binsize=40;
dPrimeL=nan(length(mice),9);
dPrimeLmiddle=nan(length(mice),9);
dPrimeLfirst=nan(length(mice),9);
BiasLfirst=nan(length(mice),9);
BiasLlast=nan(length(mice),9);
for n=1:length(mice)
cur_t=EducageTable(EducageTable.mouse_num==n,:);
ff=unique(cur_t.freq_played);
allL=unique(cur_t.level);
levels2work=allL(allL>=1&allL<7);
levels2work=allL(allL>=1);
levels2work=allL([3 4 7 8]);
%1st third
chosen_trials=[];
for ct=1:length(levels2work)
cv=find(cur_t.level==levels2work(ct));
th=floor(length(cv)/3);
chosen_trials=[chosen_trials;cv(1:th)];
end
biningL=cur_t.level(chosen_trials);
[hit, miss,fa,cr,trL,ntrL,newcorrect,correct]=find_ratios4(biningL,cur_t.score(chosen_trials));
[temp c_bias]=find_dprime(trL,ntrL,binsize);
dPrimeLfirst(n,levels2work)=temp;
BiasLfirst(n,levels2work)=c_bias;
%2nd third
chosen_trials=[];
for ct=1:length(levels2work)
cv=find(cur_t.level==levels2work(ct));
th=floor(length(cv)/3);
chosen_trials=[chosen_trials;cv(th+1:th*2)];
end
biningL=cur_t.level(chosen_trials);
[hit, miss,fa,cr,trL,ntrL,newcorrect,correct]=find_ratios4(biningL,cur_t.score(chosen_trials));
[temp c_bias]=find_dprime(trL,ntrL,binsize);
dPrimeLmiddle(n,levels2work)=temp;
%last third
chosen_trials=[];
for ct=1:length(levels2work)
cv=find(cur_t.level==levels2work(ct));
th=floor(length(cv)/3);
chosen_trials=[chosen_trials;cv(th*2+1:th*3)];
end
biningL=cur_t.level(chosen_trials);
[hit, miss,fa,cr,trL,ntrL,newcorrect,correct]=find_ratios4(biningL,cur_t.score(chosen_trials));
[temp c_bias]=find_dprime(trL,ntrL,binsize);
dPrimeL(n,levels2work)=temp;
BiasLlast(n,levels2work)=c_bias;
end
figure('name','Fig. 4d')
hold all
meand=nanmean(dPrimeL(:,1:6));
stdd=nanstd(dPrimeL(:,1:6));
yx=meand(~isnan(meand));
yxx=stdd(~isnan(stdd));
errorbar(1:length(yx),yx,yxx,'Color','k','LineWidth',2,'linestyle','none')
for n=1:length(mice)
y=dPrimeL(n,1:6);
yy=y(~isnan(y));
for nn=1:length(yy)
plot(nn-0.1,yy(nn),'marker','o','markerfacecolor','none','markeredgecolor','k','markersize',8)
end
end
set(gca,'Ytick',[0:0.5:4.5],'Xtick',[],'fontsize',12,'box','off')
ylabel('d''','fontsize',15)
xlim([0 7])
ylim([-0.4 4.5])
%%
%All learninig curves
numtrials=1800;
binsize=50;
clear sTR
clear sNTR
sTR=nan(length(mice),length(levels2work),numtrials/binsize);
sNTR=nan(length(mice),length(levels2work),numtrials/binsize);
clear dPrime
for n=1:length(mice);
%n=2
score{n}=EducageTable.score(EducageTable.mouse_num==n);
Level{n}=EducageTable.level(EducageTable.mouse_num==n);
allL=unique(EducageTable.level(EducageTable.mouse_num==n));
levels2work=allL(allL>0&allL<7);
levels2work=allL([3 4 7 8]);
figure('name','Fig. 4c')
ha = tight_subplot(1,length(levels2work),[.01 .03],[.2 .04],[.03 .03])
set(gcf,'color',[1 1 1])
for ct=1:length(levels2work)
chosen_trials=find(Level{n}==levels2work(ct),numtrials,'first');
biningL=Level{n}(chosen_trials);
bining=zeros(1,length(biningL));
binind=1:binsize:length(bining);
for b=1:length(binind)-1
bining(binind(b):end)=bining(binind(b):end)+1;
end
bining=bining';
[hit, miss,fa,cr,trL,ntrL,newcorrect,correct]=find_ratios4(bining,score{n}(chosen_trials));
[dPrime{n}{ct} c_bias]=find_dprime(trL,ntrL,binsize);
axes(ha(ct))
plot(smooth(trL,3),'color','k','linewidth',2,'linestyle','-')%,'linewidth',2)
hold on
plot(smooth(ntrL,3),'color','k','linewidth',2,'linestyle',':')%,'linewidth',2)
set(ha(ct),'Ytick',[0.5 1],'yticklabel',{'',''},'xtick',length(trL),'xticklabel',num2str((length(trL))*binsize),'fontsize',10,'box','off')
ylim([0 1])
sTR(n,ct,1:length(smooth(trL,5)))=smooth(trL,5);
sNTR(n,ct,1:length(smooth(ntrL,5)))=smooth(ntrL,5);
title(num2str(levels2work(ct)))
end
end
ylim([0 1])
%%
%IR and Licks
TD=3200;% trial duration
TD1=3200/20;% divide by the magnitude of down sampling
%prepere variable with maximal number of levels
DT=nan(length(mice),9);AlllastIRCR=nan(length(mice),9);LT=nan(length(mice),9);LastlickCR=nan(length(mice),9);FirstlickHit=nan(length(mice),9);IRTm=nan(length(mice),TD,9);IRNm=nan(length(mice),TD,9);LickNm=nan(length(mice),TD1,9);LickTm=nan(length(mice),TD1,9);
DT1=nan(length(mice),9);AlllastIRCR1=nan(length(mice),9);
DT2=nan(length(mice),9);AlllastIRCR2=nan(length(mice),9);
for n=1:length(mice)
cur_t=EducageTable(EducageTable.mouse_num==n,:);
allL=unique(cur_t.level);
levels2work=allL(allL>=1&allL<7);
for ct=1:length(levels2work)
cv=find(cur_t.level==levels2work(ct));
th=floor(length(cv)/3);
%chosen_trials=cv(th*2+1:end);
chosen_trials=cv;
[DT(n,levels2work(ct)), AlllastIRCR(n,levels2work(ct)),LT(n,levels2work(ct)),LastlickCR(n,levels2work(ct)),FirstlickHit(n,levels2work(ct)),IRTm(n,:,levels2work(ct)),IRNm(n,:,levels2work(ct)),LickTm(n,:,levels2work(ct)),LickNm(n,:,levels2work(ct))]=find_IR_licks(cur_t,chosen_trials,TD);%
end
end
%detection time of p value licks:
clear DTCLEAN
DTCLEAN(:,:,1)=[LT(:,[1:3],1)];
figure('name','Fig. S4a')
hold all
meand=nanmean(DTCLEAN(:,:,1));
yx=meand(~isnan(meand));
errorbar(yx,nanstd(DTCLEAN(:,:,1))./sqrt(sum(~isnan(DTCLEAN(:,:,1)))),'color','k','LineWidth',2,'linestyle','none')
for nn=1:length(yx)
plot(nn-0.2,DTCLEAN(:,nn),'marker','o','markerfacecolor','none','markeredgecolor','k','markersize',8)
end
set(gca,'Xtick',[],'fontsize',12,'box','off')
ylabel('detection time of p value licks (ms)','fontsize',15)
xlim([0 4])