Skip to content

Commit

Permalink
Only compute the x coefficient in xgcd when needed (#803)
Browse files Browse the repository at this point in the history
* Only compute the x coefficient when needed

* Add tests
  • Loading branch information
jonas-lj authored Jun 17, 2024
1 parent 2d23a11 commit 85ce828
Show file tree
Hide file tree
Showing 3 changed files with 59 additions and 47 deletions.
7 changes: 4 additions & 3 deletions fastcrypto-vdf/src/class_group/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -131,7 +131,8 @@ impl QuadraticForm {
y: c,
a_divided_by_gcd: mut capital_cy,
b_divided_by_gcd: mut capital_by,
} = extended_euclidean_algorithm(u2, u1);
} = extended_euclidean_algorithm(u2, u1, true);
let b = b.expect("Was computed because compute_x is true above");

let (q, r) = s.div_rem(&f);
let (g, capital_bx, capital_dy) = if r.is_zero() {
Expand All @@ -144,7 +145,7 @@ impl QuadraticForm {
y,
a_divided_by_gcd: h,
b_divided_by_gcd,
} = extended_euclidean_algorithm(&f, &s);
} = extended_euclidean_algorithm(&f, &s, false);

// 4.
let l = (&y * (&b * (w1.mod_floor(&h)) + &c * (w2.mod_floor(&h)))).mod_floor(&h);
Expand Down Expand Up @@ -220,7 +221,7 @@ impl Doubling for QuadraticForm {
y,
a_divided_by_gcd: capital_by,
b_divided_by_gcd: capital_dy,
} = extended_euclidean_algorithm(u, v);
} = extended_euclidean_algorithm(u, v, false);

let (bx, x, by, y, iterated) = partial_xgcd(
(&y * w).mod_floor(&capital_by),
Expand Down
4 changes: 2 additions & 2 deletions fastcrypto-vdf/src/math/crt.rs
Original file line number Diff line number Diff line change
Expand Up @@ -24,15 +24,15 @@ pub(crate) fn solve_simple_congruence_equation_system(
}

// The moduli must be relatively prime
let output = extended_euclidean_algorithm(p, q);
let output = extended_euclidean_algorithm(p, q, true);
if !output.gcd.is_one() {
return Err(InvalidInput);
}

let a = a.mod_floor(p);
let b = b.mod_floor(q);

let result = a * output.y * q + b * output.x * p;
let result = a * output.y * q + b * output.x.unwrap() * p;

if result.is_negative() {
Ok(result + &(p * q))
Expand Down
95 changes: 53 additions & 42 deletions fastcrypto-vdf/src/math/extended_gcd.rs
Original file line number Diff line number Diff line change
Expand Up @@ -10,37 +10,26 @@ use num_bigint::{BigInt, Sign};
use num_integer::Integer;
use num_traits::{One, Signed, Zero};
use std::mem;
use std::ops::Neg;

/// The output of the extended Euclidean algorithm on inputs `a` and `b`: The Bezout coefficients `x`
/// and `y` such that `ax + by = gcd`. The quotients `a / gcd` and `b / gcd` are also returned.
/// Note that `x` is optional and only computed in [extended_euclidean_algorithm] if `compute_x` is true.
pub struct EuclideanAlgorithmOutput {
pub gcd: BigInt,
pub x: BigInt,
pub x: Option<BigInt>,
pub y: BigInt,
pub a_divided_by_gcd: BigInt,
pub b_divided_by_gcd: BigInt,
}

impl EuclideanAlgorithmOutput {
fn flip(self) -> Self {
Self {
gcd: self.gcd,
x: self.y,
y: self.x,
a_divided_by_gcd: self.b_divided_by_gcd,
b_divided_by_gcd: self.a_divided_by_gcd,
}
}
}

/// Compute the greatest common divisor gcd of a and b. The output also returns the Bezout coefficients
/// x and y such that ax + by = gcd and also the quotients a / gcd and b / gcd.
pub(crate) fn extended_euclidean_algorithm(a: &BigInt, b: &BigInt) -> EuclideanAlgorithmOutput {
if b < a {
return extended_euclidean_algorithm(b, a).flip();
}

/// Note that `x` is only computed if `compute_x` is true.
pub(crate) fn extended_euclidean_algorithm(
a: &BigInt,
b: &BigInt,
compute_x: bool,
) -> EuclideanAlgorithmOutput {
let mut s = (BigInt::zero(), BigInt::one());
let mut t = (BigInt::one(), BigInt::zero());
let mut r = (a.clone(), b.clone());
Expand All @@ -53,38 +42,54 @@ pub(crate) fn extended_euclidean_algorithm(a: &BigInt, b: &BigInt) -> EuclideanA
mem::swap(&mut s.0, &mut s.1);
s.0 -= &q * &s.1;

mem::swap(&mut t.0, &mut t.1);
t.0 -= &q * &t.1;
if compute_x {
mem::swap(&mut t.0, &mut t.1);
t.0 -= &q * &t.1;
}
}

// The last coefficients are equal to +/- a / gcd(a,b) and b / gcd(a,b) respectively.
let a_divided_by_gcd = set_sign(s.0, a.sign());
let b_divided_by_gcd = set_sign(t.0, b.sign());

if !r.1.is_negative() {
EuclideanAlgorithmOutput {
gcd: r.1,
x: t.1,
y: s.1,
a_divided_by_gcd,
b_divided_by_gcd,
}
let a_divided_by_gcd = with_sign(s.0, a.sign());

let negate = r.1.is_negative();
let gcd = conditional_negate(negate, r.1);
let y = conditional_negate(negate, s.1);

let (x, b_divided_by_gcd) = if compute_x {
(
Some(conditional_negate(negate, t.1)),
with_sign(t.0, b.sign()),
)
} else {
EuclideanAlgorithmOutput {
gcd: r.1.neg(),
x: t.1.neg(),
y: s.1.neg(),
a_divided_by_gcd,
b_divided_by_gcd,
}
// If the t coefficients have not been computed, we can compute b_divided_by_gcd directly.
(None, b / &gcd)
};

EuclideanAlgorithmOutput {
gcd,
x,
y,
a_divided_by_gcd,
b_divided_by_gcd,
}
}

/// Return a number with the same magnitude as `value` but with the given sign.
fn set_sign(value: BigInt, sign: Sign) -> BigInt {
#[inline]
fn with_sign(value: BigInt, sign: Sign) -> BigInt {
BigInt::from_biguint(sign, value.into_parts().1)
}

/// Return `-value` if `negate` is true, otherwise return `value`.
#[inline]
fn conditional_negate(negate: bool, value: BigInt) -> BigInt {
if negate {
-value
} else {
value
}
}

#[test]
fn test_xgcd() {
test_xgcd_single(BigInt::from(240), BigInt::from(46));
Expand All @@ -95,9 +100,15 @@ fn test_xgcd() {

#[cfg(test)]
fn test_xgcd_single(a: BigInt, b: BigInt) {
let output = extended_euclidean_algorithm(&a, &b);
let output = extended_euclidean_algorithm(&a, &b, true);
assert_eq!(output.gcd, a.gcd(&b));
assert_eq!(&output.x.unwrap() * &a + &output.y * &b, output.gcd);
assert_eq!(output.a_divided_by_gcd, &a / &output.gcd);
assert_eq!(output.b_divided_by_gcd, &b / &output.gcd);

let output = extended_euclidean_algorithm(&a, &b, false);
assert_eq!(output.gcd, a.gcd(&b));
assert_eq!(&output.x * &a + &output.y * &b, output.gcd);
assert!(output.x.is_none());
assert_eq!(output.a_divided_by_gcd, &a / &output.gcd);
assert_eq!(output.b_divided_by_gcd, &b / &output.gcd);
}

0 comments on commit 85ce828

Please sign in to comment.