pip install matplotlib numpy
python main.py
from platforms.app import App
app = App()
app.read_input('your/sample/dag.json')
schedule, makespan, usage = app.schedule('heft_reserve', {'depth': 1})
print(makespan, usage)
# install dependencies
pip install networkx wfcommons
# influence of different k
python experiments/depth.py
# minimum memory on random dags
python experiments/min_memory_statistics.py
# minimum memory on real world apps
python experiments/min_memory_real.py
# minimal makespan
python experiments/tradeoff.py
You can find different DAGs under samples
directory.
- processor: same DAG but different # processors
- width: DAGs with different widths
- size: DAGS with same max width but different # nodes
- dependency: same DAG but different # edges
You can find real world applications in the paper under realworld_dax
directory.
- Montage
- CyberShake
- Epigenomics
- SIGHT
- LIGO (Inspiral)