-
Notifications
You must be signed in to change notification settings - Fork 1.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add test for openfold triton mha kernel (#1739)
* add test for openfold triton mha kernel * refine openfold triton kernel test --------- Co-authored-by: Feiwen Zhu <[email protected]>
- Loading branch information
Showing
1 changed file
with
126 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
import math | ||
import random | ||
from typing import Optional | ||
import torch | ||
import unittest | ||
|
||
SKIP_TEST = None | ||
try: | ||
from apex.contrib.openfold_triton import AttnTri as openfold_attention_triton | ||
except ImportError as e: | ||
SKIP_TEST = e | ||
|
||
|
||
def openfold_attention_eager( | ||
query: torch.Tensor, | ||
key: torch.Tensor, | ||
value: torch.Tensor, | ||
mask: torch.Tensor, | ||
bias: Optional[torch.Tensor], | ||
inf: float, | ||
) -> torch.Tensor: | ||
# query: [*, num_heads, Q, c_hidden] | ||
# key: [*, num_heads, K, c_hidden] | ||
# value: [*, num_heads, V, c_hidden] | ||
# mask: Logit mask tensor broadcastable to [*, num_heads, Q, K] | ||
# bias: Optional logit bias tensor broadcastable to [*, num_heads, Q, K] | ||
# inf: Safe infinity value. | ||
# assuming K == V | ||
|
||
key = torch.swapdims(key, -2, -1) | ||
# key: [*, num_heads, c_hidden, K] | ||
|
||
scaling = 1.0 / math.sqrt(query.size(-1)) | ||
a = torch.matmul(query * scaling, key) | ||
# a: [*, num_heads, Q, K] | ||
|
||
a += (mask - 1.0) * inf | ||
# a: [*, num_heads, Q, K] | ||
|
||
if bias is not None: | ||
a += bias | ||
# a: [*, num_heads, Q, K] | ||
|
||
a = torch.softmax(a, dim=-1) | ||
# a: [*, num_heads, Q, K] | ||
|
||
a = torch.matmul(a, value) | ||
# a: [*, num_heads, Q, c_hidden] | ||
|
||
return a | ||
|
||
|
||
@unittest.skipIf(SKIP_TEST, f"{SKIP_TEST}") | ||
class OpenfoldMhaTest(unittest.TestCase): | ||
def setUp(self, seed=1234): | ||
super().setUp() | ||
random.seed(seed) | ||
torch.manual_seed(seed) | ||
|
||
# representative workload in openfold | ||
def test_openfold_triton_mha( | ||
self, Z=256, H=4, N_CTX=256, D_HEAD=32, dtype=torch.float16 | ||
): | ||
One = 1 | ||
q = ( | ||
torch.empty((One, Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda") | ||
.normal_(mean=0.1, std=0.2) | ||
.requires_grad_() | ||
) | ||
k = ( | ||
torch.empty((One, Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda") | ||
.normal_(mean=0.4, std=0.2) | ||
.requires_grad_() | ||
) | ||
v = ( | ||
torch.empty((One, Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda") | ||
.normal_(mean=0.3, std=0.2) | ||
.requires_grad_() | ||
) | ||
bias = ( | ||
torch.empty((One, One, H, N_CTX, N_CTX), dtype=dtype, device="cuda") | ||
.normal_(mean=0.2, std=0.2) | ||
.requires_grad_() | ||
) | ||
mask = ( | ||
torch.empty((One, N_CTX, One, One, N_CTX), device="cuda").normal_( | ||
mean=0, std=0.5 | ||
) | ||
> 0 | ||
) | ||
mask = mask.to(device=torch.device("cuda"), dtype=dtype).requires_grad_(False) | ||
|
||
dout = torch.randn_like(q) | ||
inf = 1e9 | ||
|
||
# reference implementation | ||
ref_out = openfold_attention_eager(q, k, v, mask, bias, inf) | ||
ref_out.backward(dout) | ||
|
||
ref_dv, v.grad = v.grad.clone(), None | ||
ref_dk, k.grad = k.grad.clone(), None | ||
ref_dq, q.grad = q.grad.clone(), None | ||
ref_dbias, bias.grad = bias.grad.clone(), None | ||
|
||
# triton implementation | ||
tri_out = openfold_attention_triton( | ||
q, k, v, mask, bias, inf, torch.is_grad_enabled() | ||
) | ||
tri_out.backward(dout) | ||
|
||
tri_dv, v.grad = v.grad.clone(), None | ||
tri_dk, k.grad = k.grad.clone(), None | ||
tri_dq, q.grad = q.grad.clone(), None | ||
tri_dbias, bias.grad = bias.grad.clone(), None | ||
|
||
# check results | ||
torch.testing.assert_close(ref_out, tri_out, atol=1e-2, rtol=0) | ||
torch.testing.assert_close(ref_dv, tri_dv, atol=1e-2, rtol=0) | ||
torch.testing.assert_close(ref_dk, tri_dk, atol=1e-2, rtol=0) | ||
torch.testing.assert_close(ref_dq, tri_dq, atol=1e-2, rtol=0) | ||
torch.testing.assert_close(ref_dbias, tri_dbias, atol=1e-2, rtol=0) | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() | ||
|