Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added Face emotion classification Training model #1155

Merged
merged 6 commits into from
Nov 9, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
342 changes: 342 additions & 0 deletions Testemotion.ipynb

Large diffs are not rendered by default.

200 changes: 200 additions & 0 deletions Testemotion.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,200 @@
# import cv2
# import numpy as np
# from keras.models import model_from_json


# emotion_dict = {0: "Angry", 1: "Disgusted", 2: "Fearful", 3: "Happy", 4: "Neutral", 5: "Sad", 6: "Surprised"}

# # load json and create model
# json_file = open('emotion_model.json', 'r')
# loaded_model_json = json_file.read()
# json_file.close()
# emotion_model = model_from_json(loaded_model_json)

# # load weights into new model
# emotion_model.load_weights("emotion_model.h5")
# print("Loaded model from disk")

# # start the webcam feed
# #cap = cv2.VideoCapture(0)

# # pass here your video path
# # you may download one from here : https://www.pexels.com/video/three-girls-laughing-5273028/
# cap = cv2.VideoCapture(r"C:\Users\Admin\emotiontrain\WIN_20240630_00_58_04_Pro.mp4")

# while True:
# # Find haar cascade to draw bounding box around face
# ret, frame = cap.read()
# frame = cv2.resize(frame, (1280, 720))
# if not ret:
# break
# face_detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

# # detect faces available on camera
# num_faces = face_detector.detectMultiScale(gray_frame, scaleFactor=1.3, minNeighbors=5)

# # take each face available on the camera and Preprocess it
# for (x, y, w, h) in num_faces:
# cv2.rectangle(frame, (x, y-50), (x+w, y+h+10), (0, 255, 0), 4)
# roi_gray_frame = gray_frame[y:y + h, x:x + w]
# cropped_img = np.expand_dims(np.expand_dims(cv2.resize(roi_gray_frame, (48, 48)), -1), 0)

# # predict the emotions
# emotion_prediction = emotion_model.predict(cropped_img)
# maxindex = int(np.argmax(emotion_prediction))
# cv2.putText(frame, emotion_dict[maxindex], (x+5, y-20), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA)

# cv2.imshow('Emotion Detection', frame)
# if cv2.waitKey(1) & 0xFF == ord('q'):
# break

# cap.release()
# cv2.destroyAllWindows()



import cv2
import numpy as np
from keras.models import model_from_json

emotion_dict = {0: "Angry", 1: "Disgusted", 2: "Fearful", 3: "Happy", 4: "Neutral", 5: "Sad", 6: "Surprised"}

# Load json and create model
json_file = open('emotion_model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
emotion_model = model_from_json(loaded_model_json)

# Load weights into new model
emotion_model.load_weights("final_train.h5")
print("Loaded model from disk")

# Start the webcam feed
cap = cv2.VideoCapture(0)

# Pass here your video path
#cap = cv2.VideoCapture(r"C:\Users\Admin\emotiontrain\WIN_20240630_00_58_04_Pro.mp4")

while True:
# Find Haar cascade to draw bounding box around face
ret, frame = cap.read()
frame = cv2.resize(frame, (1280, 720))
if not ret:
break
face_detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

# Detect faces available on camera
num_faces = face_detector.detectMultiScale(gray_frame, scaleFactor=1.3, minNeighbors=5)

# Take each face available on the camera and preprocess it
for (x, y, w, h) in num_faces:
# Adjust the rectangle to make it slightly larger
padding = 20
cv2.rectangle(frame, (x - padding, y - 40 - padding), (x + w + padding, y + h + 10 + padding), (0, 255, 0), 4)

roi_gray_frame = gray_frame[y:y + h, x:x + w]
cropped_img = np.expand_dims(np.expand_dims(cv2.resize(roi_gray_frame, (48, 48)), -1), 0)

# Predict the emotions
emotion_prediction = emotion_model.predict(cropped_img)
maxindex = int(np.argmax(emotion_prediction))

# Adjust the text position to come out of the box
cv2.putText(frame, emotion_dict[maxindex], (x + 5, y - 80), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA)

cv2.imshow('Emotion Detection', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break

cap.release()
cv2.destroyAllWindows()

# import cv2
# import numpy as np
# from keras.models import model_from_json

# # Load the emotion recognition model
# emotion_dict = {0: "Angry", 1: "Disgusted", 2: "Fearful", 3: "Happy", 4: "Neutral", 5: "Sad", 6: "Surprised"}

# # Load json and create model
# json_file = open('emotion_model.json', 'r')
# loaded_model_json = json_file.read()
# json_file.close()
# emotion_model = model_from_json(loaded_model_json)

# # Load weights into new model
# emotion_model.load_weights("emotion_model.h5")
# print("Loaded model from disk")

# # Start the webcam feed or video file
# # cap = cv2.VideoCapture(0) # For webcam
# cap = cv2.VideoCapture(r"C:\Users\Admin\emotiontrain\WIN_20240630_00_58_04_Pro.mp4") # For video file

# while True:
# # Read frame from video
# ret, frame = cap.read()
# if not ret:
# break
# frame = cv2.resize(frame, (640, 360)) # Resize for display

# # Convert frame to grayscale for face detection
# gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# face_detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

# # Detect faces in the frame
# num_faces = face_detector.detectMultiScale(gray_frame, scaleFactor=1.3, minNeighbors=5)

# # Create a copy of the frame for segmentation display
# segmented_frame = frame.copy()

# # Process each detected face
# for (x, y, w, h) in num_faces:
# padding = 20
# # Draw rectangle on the original frame
# cv2.rectangle(frame, (x - padding, y - 40 - padding), (x + w + padding, y + h + 10 + padding), (0, 255, 0), 2)

# roi_gray_frame = gray_frame[y:y + h, x:x + w]
# cropped_img = np.expand_dims(np.expand_dims(cv2.resize(roi_gray_frame, (48, 48)), -1), 0)

# # Predict emotion
# emotion_prediction = emotion_model.predict(cropped_img)
# maxindex = int(np.argmax(emotion_prediction))
# emotion_label = emotion_dict[maxindex]

# # Draw emotion label on both frames
# cv2.putText(frame, emotion_label, (x + 5, y - 80), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA)
# cv2.putText(segmented_frame, emotion_label, (x + 5, y - 80), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA)

# # Segment the detected face region
# face_region = segmented_frame[y:y+h, x:x+w]
# lab_face_region = cv2.cvtColor(face_region, cv2.COLOR_BGR2LAB)
# pixel_values = lab_face_region.reshape((-1, 3))
# pixel_values = np.float32(pixel_values)

# # K-means clustering
# criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2)
# k = 3 # Number of clusters
# _, labels, (centers) = cv2.kmeans(pixel_values, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
# centers = np.uint8(centers)
# segmented_face_region = centers[labels.flatten()]
# segmented_face_region = segmented_face_region.reshape(lab_face_region.shape)
# segmented_face_region_bgr = cv2.cvtColor(segmented_face_region, cv2.COLOR_LAB2BGR)

# # Replace the original face region with the segmented face region
# segmented_frame[y:y+h, x:x+w] = segmented_face_region_bgr

# # Display the results in two separate windows
# cv2.imshow('Original Emotion Detection', frame)
# cv2.imshow('Segmented Emotion Detection', segmented_frame)

# # Position the windows next to each other
# cv2.moveWindow('Original Emotion Detection', 0, 0)
# cv2.moveWindow('Segmented Emotion Detection', 650, 0) # Adjust the x-coordinate for positioning

# if cv2.waitKey(1) & 0xFF == ord('q'):
# break

# cap.release()
# cv2.destroyAllWindows()
69 changes: 69 additions & 0 deletions Training.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@

# import required packages
import cv2
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Dense, Dropout, Flatten
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.preprocessing.image import ImageDataGenerator

# Initialize image data generator with rescaling
train_data_gen = ImageDataGenerator(rescale=1./255)
validation_data_gen = ImageDataGenerator(rescale=1./255)

# Preprocess all test images
train_generator = train_data_gen.flow_from_directory(
'train',
target_size=(48, 48),
batch_size=64,
color_mode="grayscale",
class_mode='categorical')

# Preprocess all train images
validation_generator = validation_data_gen.flow_from_directory(
'test',
target_size=(48, 48),
batch_size=64,
color_mode="grayscale",
class_mode='categorical')

# create model structure
emotion_model = Sequential()

emotion_model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(48, 48, 1)))
emotion_model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
emotion_model.add(Dropout(0.25))

emotion_model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
emotion_model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
emotion_model.add(Dropout(0.25))

emotion_model.add(Flatten())
emotion_model.add(Dense(1024, activation='relu'))
emotion_model.add(Dropout(0.5))
emotion_model.add(Dense(7, activation='softmax'))

cv2.ocl.setUseOpenCL(False)

emotion_model.compile(loss='categorical_crossentropy', optimizer=Adam(learning_rate=0.0001, decay=1e-6), metrics=['accuracy'])

# Train the neural network/model
emotion_model_info = emotion_model.fit(
train_generator,
steps_per_epoch=28709 // 64,
epochs=50,
validation_data=validation_generator,
validation_steps=7178 // 64
)


# save model structure in jason file
model_json = emotion_model.to_json()
with open("emotion_model.json", "w") as json_file:
json_file.write(model_json)

# save trained model weight in .h5 file
emotion_model.save('emotion_model.h5')

69 changes: 69 additions & 0 deletions Training.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@

# import required packages
import cv2
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Dense, Dropout, Flatten
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.preprocessing.image import ImageDataGenerator

# Initialize image data generator with rescaling
train_data_gen = ImageDataGenerator(rescale=1./255)
validation_data_gen = ImageDataGenerator(rescale=1./255)

# Preprocess all test images
train_generator = train_data_gen.flow_from_directory(
'train',
target_size=(48, 48),
batch_size=64,
color_mode="grayscale",
class_mode='categorical')

# Preprocess all train images
validation_generator = validation_data_gen.flow_from_directory(
'test',
target_size=(48, 48),
batch_size=64,
color_mode="grayscale",
class_mode='categorical')

# create model structure
emotion_model = Sequential()

emotion_model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(48, 48, 1)))
emotion_model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
emotion_model.add(Dropout(0.25))

emotion_model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
emotion_model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
emotion_model.add(Dropout(0.25))

emotion_model.add(Flatten())
emotion_model.add(Dense(1024, activation='relu'))
emotion_model.add(Dropout(0.5))
emotion_model.add(Dense(7, activation='softmax'))

cv2.ocl.setUseOpenCL(False)

emotion_model.compile(loss='categorical_crossentropy', optimizer=Adam(learning_rate=0.0001, decay=1e-6), metrics=['accuracy'])

# Train the neural network/model
emotion_model_info = emotion_model.fit(
train_generator,
steps_per_epoch=28709 // 64,
epochs=50,
validation_data=validation_generator,
validation_steps=7178 // 64
)


# save model structure in jason file
model_json = emotion_model.to_json()
with open("emotion_model.json", "w") as json_file:
json_file.write(model_json)

# save trained model weight in .h5 file
emotion_model.save('emotion_model.h5')

Loading
Loading