Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Project : Facial Expression Recognition with PyTorch Issue #697 #745

Closed
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
51 commits
Select commit Hold shift + click to select a range
475b56a
Add jupyter notebook for dictioaries in Basics of Python.
Varshni11 May 14, 2024
7db7646
Add jupyter notebook for list and ranges.
Varshni11 May 14, 2024
9e2c1a4
Add jupyter notebook for tuples.
Varshni11 May 14, 2024
1f6fee7
Add jupyter notebook for control flow.
Varshni11 May 14, 2024
5b5e587
Added Text Summarization Model
akshaydubey05 May 16, 2024
a4cb623
Add files via upload
May 17, 2024
072ea35
Added Movie Genre Classification
Manav173 May 17, 2024
5c2a6a9
made different code blocks
akshaydubey05 May 18, 2024
f63ddf2
Dark pattern detection added
litesh1123 May 18, 2024
9c07305
Create netflix.pbix
shubhamnakum May 19, 2024
1626519
Create Readme.md
shubhamnakum May 19, 2024
70e94c3
Add files via upload
shubhamnakum May 19, 2024
943b083
Updating Screenshots & steps
shubhamnakum May 20, 2024
1eac21e
Text Summarization Model.
Niketkumardheeryan May 21, 2024
e64550a
Merge pull request #636 from Raghucharan16/chicken-disease-classifica…
Niketkumardheeryan May 21, 2024
4e69feb
Netflix data analysis using PowerBI
Niketkumardheeryan May 21, 2024
195f997
Create test.txt
kRiShNa-429407 May 22, 2024
5ed9fe1
Update and rename test.txt to Index.md
kRiShNa-429407 May 22, 2024
9a26e12
Add files via upload
kRiShNa-429407 May 22, 2024
f2c37db
readme for dark pattern detection added
litesh1123 May 23, 2024
00e0657
Update Readme.md
litesh1123 May 23, 2024
d4654eb
Update Readme.md
litesh1123 May 23, 2024
f67b981
Update Readme.md
litesh1123 May 23, 2024
7fe48c4
Update Readme.md
litesh1123 May 23, 2024
fb3c2f5
Update Readme.md
litesh1123 May 23, 2024
3dc7ecb
Create readme.md
kRiShNa-429407 May 23, 2024
a7b6f9b
Update readme.md
kRiShNa-429407 May 23, 2024
0f0870a
Create readme.md
kRiShNa-429407 May 23, 2024
fba4a85
Add files via upload
kRiShNa-429407 May 23, 2024
1c29852
Update Importing_and_Exporting_Data_in_Pandas.ipynb
kRiShNa-429407 May 23, 2024
f22b45d
Delete Pandas-Basics/Importing_and_Exporting_Data_in_Pandas.ipynb
kRiShNa-429407 May 23, 2024
b95769c
Add files via upload
kRiShNa-429407 May 23, 2024
a489691
Update Importing_and_Exporting_Data_in_Pandas.md
kRiShNa-429407 May 23, 2024
2850123
Delete Pandas-Basics/Importing_and_Exporting_Data_in_Pandas.md
kRiShNa-429407 May 23, 2024
0150a65
Add files via upload
kRiShNa-429407 May 23, 2024
965653d
Update readme.md
kRiShNa-429407 May 23, 2024
f100eff
Update readme.md
kRiShNa-429407 May 23, 2024
457cecf
Delete Bitcoin Price Predictor/Bitcoin_Price_Prediction.ipynb
FreeSpirit11 May 24, 2024
63121b7
Upload updated file
FreeSpirit11 May 24, 2024
fa648c1
Update Bitcoin_Price_Prediction.ipynb
FreeSpirit11 May 24, 2024
78fff84
Merge pull request #687 from kRiShNa-429407/master
Niketkumardheeryan May 25, 2024
58e8b00
Merge pull request #702 from FreeSpirit11/Improve-Bitcoin-price-predi…
Niketkumardheeryan May 25, 2024
c13546b
Merge pull request #696 from litesh1123/readme_darkpattern
Niketkumardheeryan May 25, 2024
9a3184f
Add ipynb files for while and for loops.
Varshni11 May 25, 2024
5769238
Created ipynb for list comprehensions.
Varshni11 May 25, 2024
2f73926
Add .ipynb files for functions.
Varshni11 May 25, 2024
8f4b8ac
Add ipynb files for lambdas and files sessions.
Varshni11 May 25, 2024
37ceb31
Merge pull request #709 from Varshni11/basics-python-ipynb
Niketkumardheeryan May 28, 2024
8f90c01
Merge pull request #641 from Manav173/moviegenre
Niketkumardheeryan May 28, 2024
e340415
Create Readme.md
revanth1718 May 31, 2024
7cd33f4
Added Project Files
revanth1718 May 31, 2024
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5,336 changes: 5,336 additions & 0 deletions Basics of Power Bi/Netflix/Netflixcleaned.csv

Large diffs are not rendered by default.

44 changes: 44 additions & 0 deletions Basics of Power Bi/Netflix/Readme.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
# Netflix Power BI Report

## Overview

This project involves analyzing Netflix data using Power BI to uncover insights and trends. The report includes various visualizations that highlight key metrics such as viewing trends, genre popularity, and user demographics.

## Screenshots

![Netflix_Report](image.png)
![Sentiments](image-1.png)

## Features

- **Content Analysis**: Visualization of content distribution by genre, country, and release year.
- **Trend Analysis**: Identification of trends in content production and user ratings over time.
- **Top Content**: Highlighting the most popular shows and movies based on user ratings and watch counts.
- **User Demographics**: Insights into user preferences by region and age group.
- **Top Casts**: Highlighting the top Casts based on total contents.

- ## Files
- **Netflix.pbix**: The main Power BI file containing all the visualizations and dashboards.
- **Netflix(Dataset)**: The folder containing the dataset used for the analysis.

## Steps

1. **Open the Power BI File**: Download and open the `Netflix_PowerBI_Report.pbix` file in Power BI Desktop.
2. **Explore the Visualizations**: Navigate through the different pages to explore various insights.
3. **Customize as Needed**: Modify the visualizations and data as needed to suit your requirements.

## Getting Started

To get started with the project, follow these steps:

1. **Clone the Repository**:

```sh
git clone https://github.com/your-username/Netflix-PowerBI-Report.git
```

2. **Open the Power BI Report**:
- Open `Netflix_PowerBI_Report.pbix` in Power BI Desktop.

**Author**: Shubham Nakum
**Contact**: [email protected]
Binary file added Basics of Power Bi/Netflix/image-1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added Basics of Power Bi/Netflix/image.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added Basics of Power Bi/Netflix/netflix.pbix
Binary file not shown.
Original file line number Diff line number Diff line change
@@ -0,0 +1,295 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h1 style=\"color:blue\">DICTIONARIES</h1>\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<ul type=\"disc\">\n",
"<li>Consists of keys and key values separated by a colon</li>\n",
"<li> Dictionaries, also called dict can contain,\n",
"<ul type=\"square\">\n",
"<li>Strings and numbers</li>\n",
"<li>Tuples</li>\n",
"<li>lists</li>\n",
"<li>sets</li>\n",
"<li>dataframes</li>\n",
"<li>series</li>\n",
"<li>nested dictionaries</li>\n",
"</ul>\n",
"</li>\n",
"</ul>"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"dict"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"d1={}\n",
"type(d1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h2>Adding elements into dictionary</h2>\n",
"<p> Elements can be added to dictionary as a key, value pairs in the following way:</p>\n",
"<code> dictionary[key]=value </code>"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'A': 10, 'B': 20, 'C': 30}\n"
]
}
],
"source": [
"d1['A']=10\n",
"d1['B']=20\n",
"d1['C']=30\n",
"print(d1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h2>Changing values in dictionary</h2>\n",
"<p>Dictionaries are mutable, meaning the values referenced by dictionary keys can be changed. This is illustrated in the following example...</p>"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Dictionaries before changing value of 'C' {'A': 10, 'B': 20, 'C': 1000}\n",
"Dictionaries after changing value of 'C' {'A': 10, 'B': 20, 'C': 1000}\n"
]
}
],
"source": [
"print(\"Dictionaries before changing value of 'C'\",d1)\n",
"d1[\"C\"] = 1000\n",
"print(\"Dictionaries after changing value of 'C'\",d1)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<hr><br>We can also update a dictionary with elements of another dictionary as follows..."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'robot': 40, 'car': 50, 'A': 10, 'B': 20, 'C': 1000}"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"toys = {\"robot\": 40, \"car\": 50}\n",
"toys.update(d1)\n",
"toys\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h2> Accessing the keys and values seperately</h2>\n",
"We can get the keys and values seperately using keys() and values() methods respectively. They can converted to a list by wrapping it inside the list() method"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"dict_values([40, 50, 20, 1000])"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"toys.values()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"dict_keys(['robot', 'car', 'A', 'B', 'C'])"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list(toys.keys())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h2>Deleting an element from Dictionary</h2>\n",
"<p>To remove an key-value pair, we use pop(key)</p>"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'robot': 40, 'car': 50, 'B': 20, 'C': 1000}"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"\n",
"toys.pop(\"A\")\n",
"toys\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"More examples..."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'k1': [0, 1, 2, 3],\n",
" 'k2': (4, 5, 6, 7),\n",
" 'k3': (1, 2, 3, {'k4': [1, 2, 3, 'found you!', 4, 5]})}"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"maze = {\"k1\": list(range(4)), \"k2\": tuple(range(4,8)),\n",
"\"k3\": (1,2, 3, {\"k4\": [1,2,3, \"found you!\", 4, 5]})}\n",
"maze\n"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'found you!'"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"maze[\"k3\"][3][\"k4\"][3]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "vars",
"language": "python",
"name": "vars"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Loading