forked from pageldev/libOpenDRIVE
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Lanes.cpp
243 lines (198 loc) · 10.1 KB
/
Lanes.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
#include "Lanes.h"
#include "RefLine.h"
#include "Road.h"
#include "Utils.hpp"
namespace odr
{
Lane::Lane(int id, bool level, std::string type) : id(id), level(level), type(type) {}
Vec3D Lane::get_surface_pt(double s, double t, Vec3D* vn) const
{
auto road_ptr = this->road.lock();
if (!road_ptr)
throw std::runtime_error("could not access parent road for lane section");
const double t_inner_brdr = this->inner_border.get(s);
double h_t = 0;
if (this->level)
{
const double h_inner_brdr = -std::tan(road_ptr->crossfall.get_crossfall(s, (this->id > 0))) * std::abs(t_inner_brdr);
const double superelev = road_ptr->superelevation.get(s); // cancel out superelevation
h_t = h_inner_brdr + std::tan(superelev) * (t - t_inner_brdr);
}
else
{
h_t = -std::tan(road_ptr->crossfall.get_crossfall(s, (this->id > 0))) * std::abs(t);
}
if (this->s_to_height_offset.size() > 0)
{
const std::map<double, HeightOffset>& height_offs = this->s_to_height_offset;
auto s0_height_offs_iter = height_offs.upper_bound(s);
if (s0_height_offs_iter != height_offs.begin())
s0_height_offs_iter--;
const double t_outer_brdr = this->outer_border.get(s);
const double inner_height = s0_height_offs_iter->second.inner;
const double outer_height = s0_height_offs_iter->second.outer;
const double p_t = (t_outer_brdr != t_inner_brdr) ? (t - t_inner_brdr) / (t_outer_brdr - t_inner_brdr) : 0.0;
h_t += p_t * (outer_height - inner_height) + inner_height;
if (std::next(s0_height_offs_iter) != height_offs.end())
{
/* if successive lane height entry available linearly interpolate */
const double ds = std::next(s0_height_offs_iter)->first - s0_height_offs_iter->first;
const double d_lh_inner = std::next(s0_height_offs_iter)->second.inner - inner_height;
const double dh_inner = (d_lh_inner / ds) * (s - s0_height_offs_iter->first);
const double d_lh_outer = std::next(s0_height_offs_iter)->second.outer - outer_height;
const double dh_outer = (d_lh_outer / ds) * (s - s0_height_offs_iter->first);
h_t += p_t * (dh_outer - dh_inner) + dh_inner;
}
}
return road_ptr->get_xyz(s, t, h_t, nullptr, nullptr, vn);
}
std::set<double> Lane::approximate_border_linear(double s_start, double s_end, double eps, bool outer) const
{
auto road_ptr = this->road.lock();
if (!road_ptr)
throw std::runtime_error("could not access parent road for lane section");
std::set<double> s_vals = road_ptr->ref_line->approximate_linear(eps, s_start, s_end);
const CubicSpline& border = outer ? this->outer_border : this->inner_border;
std::set<double> s_vals_brdr = border.approximate_linear(eps, s_start, s_end);
s_vals.insert(s_vals_brdr.begin(), s_vals_brdr.end());
std::set<double> s_vals_lane_height = extract_keys(this->s_to_height_offset);
s_vals.insert(s_vals_lane_height.begin(), s_vals_lane_height.end());
const double t_max = this->outer_border.get_max(s_start, s_end);
std::set<double> s_vals_superelev = road_ptr->superelevation.approximate_linear(std::atan(eps / std::abs(t_max)), s_start, s_end);
s_vals.insert(s_vals_superelev.begin(), s_vals_superelev.end());
return s_vals;
}
Line3D Lane::get_border_line(double s_start, double s_end, double eps, bool outer) const
{
auto road_ptr = this->road.lock();
if (!road_ptr)
throw std::runtime_error("could not access parent road for lane section");
std::set<double> s_vals = this->approximate_border_linear(s_start, s_end, eps, outer);
Line3D border_line;
for (const double& s : s_vals)
{
const double t = outer ? this->outer_border.get(s) : this->inner_border.get(s);
border_line.push_back(this->get_surface_pt(s, t));
}
return border_line;
}
Mesh3D Lane::get_mesh(double s_start, double s_end, double eps, std::vector<uint32_t>* outline_indices) const
{
auto road_ptr = this->road.lock();
if (!road_ptr)
throw std::runtime_error("could not access parent road for lane section");
std::set<double> s_vals = road_ptr->ref_line->approximate_linear(eps, s_start, s_end);
std::set<double> s_vals_outer_brdr = this->outer_border.approximate_linear(eps, s_start, s_end);
s_vals.insert(s_vals_outer_brdr.begin(), s_vals_outer_brdr.end());
std::set<double> s_vals_inner_brdr = this->inner_border.approximate_linear(eps, s_start, s_end);
s_vals.insert(s_vals_inner_brdr.begin(), s_vals_inner_brdr.end());
std::set<double> s_vals_lane_height = extract_keys(this->s_to_height_offset);
s_vals.insert(s_vals_lane_height.begin(), s_vals_lane_height.end());
const double t_max = this->outer_border.get_max(s_start, s_end);
std::set<double> s_vals_superelev = road_ptr->superelevation.approximate_linear(std::atan(eps / std::abs(t_max)), s_start, s_end);
s_vals.insert(s_vals_superelev.begin(), s_vals_superelev.end());
/* thin out s_vals array, be removing s vals closer than eps to each other */
for (auto s_iter = s_vals.begin(); s_iter != s_vals.end();)
{
if (std::next(s_iter) != s_vals.end() && std::next(s_iter, 2) != s_vals.end() && ((*std::next(s_iter)) - *s_iter) <= eps)
s_iter = std::prev(s_vals.erase(std::next(s_iter)));
else
s_iter++;
}
Mesh3D out_mesh;
for (const double& s : s_vals)
{
Vec3D vn_inner_brdr{0, 0, 0};
const double t_inner_brdr = this->inner_border.get(s);
out_mesh.vertices.push_back(this->get_surface_pt(s, t_inner_brdr, &vn_inner_brdr));
out_mesh.normals.push_back(vn_inner_brdr);
out_mesh.st_coordinates.push_back({s, t_inner_brdr});
Vec3D vn_outer_brdr{0, 0, 0};
const double t_outer_brdr = this->outer_border.get(s);
out_mesh.vertices.push_back(this->get_surface_pt(s, t_outer_brdr, &vn_outer_brdr));
out_mesh.normals.push_back(vn_outer_brdr);
out_mesh.st_coordinates.push_back({s, t_outer_brdr});
}
const size_t num_pts = out_mesh.vertices.size();
const bool ccw = this->id > 0;
for (size_t idx = 3; idx < num_pts; idx += 2)
{
std::array<size_t, 6> indicies_patch;
if (ccw)
indicies_patch = {idx - 3, idx - 1, idx, idx - 3, idx, idx - 2};
else
indicies_patch = {idx - 3, idx, idx - 1, idx - 3, idx - 2, idx};
out_mesh.indices.insert(out_mesh.indices.end(), indicies_patch.begin(), indicies_patch.end());
}
if (outline_indices)
{
*outline_indices = get_triangle_strip_outline_indices<uint32_t>(out_mesh.vertices.size());
}
return out_mesh;
}
std::vector<std::shared_ptr<RoadMark>> Lane::get_roadmarks(double s_start, double s_end) const
{
if ((s_start == s_end) || this->s_to_roadmark_group.empty())
return {};
auto s_end_rm_iter = this->s_to_roadmark_group.lower_bound(s_end);
auto s_start_rm_iter = this->s_to_roadmark_group.upper_bound(s_start);
if (s_start_rm_iter != this->s_to_roadmark_group.begin())
s_start_rm_iter--;
std::vector<std::shared_ptr<RoadMark>> roadmarks;
for (auto s_rm_iter = s_start_rm_iter; s_rm_iter != s_end_rm_iter; s_rm_iter++)
{
const RoadMarkGroup& roadmark_group = s_rm_iter->second;
const double s_start_roadmark_group = std::max(s_rm_iter->first, s_start);
const double s_end_roadmark_group = (std::next(s_rm_iter) == s_end_rm_iter) ? s_end : std::min(std::next(s_rm_iter)->first, s_end);
double width = roadmark_group.weight == "bold" ? ROADMARK_WEIGHT_BOLD_WIDTH : ROADMARK_WEIGHT_STANDARD_WIDTH;
if (roadmark_group.s_to_roadmarks_line.size() == 0)
{
if (roadmark_group.width > 0)
width = roadmark_group.width;
roadmarks.push_back(std::make_shared<RoadMark>(RoadMark{s_start_roadmark_group, s_end_roadmark_group, 0, width, roadmark_group.type}));
}
else
{
for (const auto& s_roadmarks_line : roadmark_group.s_to_roadmarks_line)
{
const RoadMarksLine& roadmarks_line = s_roadmarks_line.second;
if (roadmarks_line.width > 0)
width = roadmarks_line.width;
if ((roadmarks_line.length + roadmarks_line.space) == 0)
continue;
for (double s_start_single_roadmark = s_roadmarks_line.first; s_start_single_roadmark < s_end_roadmark_group;
s_start_single_roadmark += (roadmarks_line.length + roadmarks_line.space))
{
const double s_end_single_roadmark = std::min(s_end, s_start_single_roadmark + roadmarks_line.length);
roadmarks.push_back(std::make_shared<RoadMark>(RoadMark{
s_start_single_roadmark, s_end_single_roadmark, roadmarks_line.t_offset, width, roadmark_group.type + roadmarks_line.name}));
}
}
}
}
return roadmarks;
}
Mesh3D Lane::get_roadmark_mesh(std::shared_ptr<const RoadMark> roadmark, double eps) const
{
const std::set<double> s_vals = this->approximate_border_linear(roadmark->s_start, roadmark->s_end, eps, true);
Mesh3D out_mesh;
for (const double& s : s_vals)
{
Vec3D vn_edge_a{0, 0, 0};
const double t_edge_a = this->outer_border.get(s) + roadmark->width * 0.5 + roadmark->t_offset;
out_mesh.vertices.push_back(this->get_surface_pt(s, t_edge_a, &vn_edge_a));
out_mesh.normals.push_back(vn_edge_a);
Vec3D vn_edge_b{0, 0, 0};
const double t_edge_b = t_edge_a - roadmark->width;
out_mesh.vertices.push_back(this->get_surface_pt(s, t_edge_b, &vn_edge_b));
out_mesh.normals.push_back(vn_edge_b);
}
const size_t num_pts = out_mesh.vertices.size();
for (size_t idx = 3; idx < num_pts; idx += 2)
{
std::array<size_t, 6> indicies_patch = {idx - 3, idx, idx - 1, idx - 3, idx - 2, idx};
out_mesh.indices.insert(out_mesh.indices.end(), indicies_patch.begin(), indicies_patch.end());
}
return out_mesh;
}
} // namespace odr