Skip to content

Commit

Permalink
Support MathVista
Browse files Browse the repository at this point in the history
  • Loading branch information
czczup committed Feb 4, 2024
1 parent 8fff25b commit ac6e5c9
Show file tree
Hide file tree
Showing 7 changed files with 977 additions and 66 deletions.
38 changes: 35 additions & 3 deletions internvl_chat/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -110,9 +110,9 @@ Coming Soon

**MultiModal Benchmark**

| model | MME | MMB<sub>dev/test</sub> | MMB-CN<sub>dev/test</sub> | POPE | MMVP |
| --------------------------------------------------------------------------------- | -------------- | ---------------------- | ------------------------- | ---- | ---- |
| [InternVL-Chat-V1.1](https://huggingface.co/OpenGVLab/InternVL-Chat-Chinese-V1-1) | 1672.3 / 341.1 | 76.6 / 75.4 | 71.5 / 70.1 | 87.2 | 44.7 |
| model | MME | MMB<sub>dev/test</sub> | MMB-CN<sub>dev/test</sub> | POPE | MMVP | MathVista |
| --------------------------------------------------------------------------------- | -------------- | ---------------------- | ------------------------- | ---- | ---- | --------- |
| [InternVL-Chat-V1.1](https://huggingface.co/OpenGVLab/InternVL-Chat-Chinese-V1-1) | 1672.3 / 341.1 | 76.6 / 75.4 | 71.5 / 70.1 | 87.2 | 44.7 | 34.5 |

| model | MMMU<sub>val/test</sub> | CMMMU<sub>val/test</sub> | Tiny<sub>LVLM</sub> | LLaVA<sub>bench</sub> | MM-Vet |
| --------------------------------------------------------------------------------- | ----------------------- | ------------------------ | ------------------- | --------------------- | ------ |
Expand Down Expand Up @@ -291,6 +291,9 @@ data
├── MMVP_VLM
│ ├── MLLM_VLM Images/
│ └── Questions.csv
├── MathVista
│ ├── annot_testmini.json
│ └── AI4Math___math_vista/
```

</details>
Expand Down Expand Up @@ -1005,3 +1008,32 @@ CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 sh evaluate.sh <checkpoint> mmvp
```

</details>

#### [MathVista](https://github.com/lupantech/MathVista)

<details>
<summary>Data Preparation</summary>

```bash
mkdir -p data/MathVista && cd data/MathVista
# Execute the following python code
# from datasets import load_dataset
# dataset = load_dataset("AI4Math/MathVista")
# dataset.save_to_disk('./MathVista')
wget https://huggingface.co/datasets/AI4Math/MathVista/raw/main/annot_testmini.json
cd ../..
```

</details>

<details>
<summary>Evaluation</summary>

```bash
# testmini set
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 sh evaluate.sh <checkpoint> mathvista-testmini
# test set
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 sh evaluate.sh <checkpoint> mathvista-test
```

</details>
258 changes: 258 additions & 0 deletions internvl_chat/eval/mathvista/calculate_score.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,258 @@
import argparse
import sys

import pandas as pd
# !pip install python-Levenshtein
from Levenshtein import distance
from utilities import *


def get_most_similar(prediction, choices):
"""
Use the Levenshtein distance (or edit distance) to determine which of the choices is most similar to the given prediction
"""
distances = [distance(prediction, choice) for choice in choices]
ind = distances.index(min(distances))
return choices[ind]
# return min(choices, key=lambda choice: distance(prediction, choice))


def normalize_extracted_answer(extraction, choices, question_type, answer_type, precision):
"""
Normalize the extracted answer to match the answer type
"""
if question_type == 'multi_choice':
# make sure the extraction is a string
if isinstance(extraction, str):
extraction = extraction.strip()
else:
try:
extraction = str(extraction)
except:
extraction = ''

# extract "A" from "(A) text"
letter = re.findall(r'\(([a-zA-Z])\)', extraction)
if len(letter) > 0:
extraction = letter[0].upper()

options = [chr(ord('A') + i) for i in range(len(choices))]

if extraction in options:
# convert option letter to text, e.g. "A" -> "text"
ind = options.index(extraction)
extraction = choices[ind]
else:
# select the most similar option
extraction = get_most_similar(extraction, choices)
assert extraction in choices

elif answer_type == 'integer':
try:
extraction = str(int(float(extraction)))
except:
extraction = None

elif answer_type == 'float':
try:
extraction = str(round(float(extraction), precision))
except:
extraction = None

elif answer_type == 'list':
try:
extraction = str(extraction)
except:
extraction = None

return extraction


def safe_equal(prediction, answer):
"""
Check if the prediction is equal to the answer, even if they are of different types
"""
try:
if prediction == answer:
return True
return False
except Exception as e:
print(e)
return False


def get_acc_with_contion(res_pd, key, value):
if key == 'skills':
# if value in res_pd[key]:
total_pd = res_pd[res_pd[key].apply(lambda x: value in x)]
else:
total_pd = res_pd[res_pd[key] == value]

correct_pd = total_pd[total_pd['true_false'] == True] # noqa: E712
acc = '{:.2f}'.format(len(correct_pd) / len(total_pd) * 100)
return len(correct_pd), len(total_pd), acc


if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--output_dir', type=str, default='./results')
parser.add_argument('--output_file', type=str, default='output.json')
parser.add_argument('--score_file', type=str, default='scores.json')
parser.add_argument('--gt_file', type=str, default='./data/MathVista/annot_testmini.json', help='ground truth file')
parser.add_argument('--number', type=int, default=-1, help='number of problems to run')
parser.add_argument('--rerun', action='store_true', help='rerun the evaluation')
parser.add_argument('--caculate_gain', action='store_true', help='caculate the socre gains over random guess')
parser.add_argument('--random_file', type=str, default='score_random_guess.json')
args = parser.parse_args()

# args
output_file = os.path.join(args.output_dir, args.output_file)

# # quick test
# output_file = '../results/llava-llama-2-13b/output_llava_llama_2_13b.json'

# read json
print(f'Reading {output_file}...')
results = read_json(output_file)

# read ground truth
print(f'Reading {args.gt_file}...')
gts = read_json(args.gt_file)

# full pids
full_pids = list(results.keys())
if args.number > 0:
full_pids = full_pids[:min(args.number, len(full_pids))]
print('Number of testing problems:', len(full_pids))

## [1] Evaluate if the prediction is true or false
print('\nEvaluating the predictions...')
update_json_flag = False
for pid in full_pids:
problem = results[pid]
# print(problem)

if args.rerun:
if 'prediction' in problem:
del problem['prediction']
if 'true_false' in problem:
del problem['true_false']

choices = problem['choices']
question_type = problem['question_type']
answer_type = problem['answer_type']
precision = problem['precision']
extraction = problem['extraction']

if 'answer' in problem:
answer = problem['answer']
else:
answer = gts[pid]['answer']
problem['answer'] = answer

# normalize the extracted answer to match the answer type
prediction = normalize_extracted_answer(extraction, choices, question_type, answer_type, precision)

# verify the prediction is true or false
true_false = safe_equal(prediction, answer)

# update the problem
if 'true_false' not in problem:
update_json_flag = True

elif true_false != problem['true_false']:
update_json_flag = True

if 'prediction' not in problem:
update_json_flag = True

elif prediction != problem['prediction']:
update_json_flag = True

problem['prediction'] = prediction
problem['true_false'] = true_false

# save the updated json
if update_json_flag:
print('\n!!!Some problems are updated.!!!')
print(f'\nSaving {output_file}...')
save_json(results, output_file)

## [2] Calculate the average accuracy
total = len(full_pids)
correct = 0
for pid in full_pids:
if results[pid]['true_false']:
correct += 1
accuracy = str(round(correct / total * 100, 2))
print(f'\nCorrect: {correct}, Total: {total}, Accuracy: {accuracy}%')

scores = {'average': {'accuracy': accuracy, 'correct': correct, 'total': total}}

## [3] Calculate the fine-grained accuracy scores

# merge the 'metadata' attribute into the data
for pid in results:
results[pid].update(results[pid].pop('metadata'))

# convert the data to a pandas DataFrame
df = pd.DataFrame(results).T

print(len(df))
print('Number of test problems:', len(df))
# assert len(df) == 1000 # Important!!!

# asign the target keys for evaluation
target_keys = ['question_type', 'answer_type', 'language', 'source', 'category', 'task', 'context', 'grade',
'skills']

for key in target_keys:
print(f'\nType: [{key}]')
# get the unique values of the key
if key == 'skills':
# the value is a list
values = []
for i in range(len(df)):
values += df[key][i]
values = list(set(values))
else:
values = df[key].unique()
# print(values)

# calculate the accuracy for each value
scores[key] = {}
for value in values:
correct, total, acc = get_acc_with_contion(df, key, value)
if total > 0:
print(f'[{value}]: {acc}% ({correct}/{total})')
scores[key][value] = {'accuracy': acc, 'correct': correct, 'total': total}

# sort the scores by accuracy
scores[key] = dict(sorted(scores[key].items(), key=lambda item: float(item[1]['accuracy']), reverse=True))

# save the scores
scores_file = os.path.join(args.output_dir, args.score_file)
print(f'\nSaving {scores_file}...')
save_json(scores, scores_file)
print('\nDone!')

# [4] Calculate the score gains over random guess
if args.caculate_gain:
random_file = os.path.join(args.output_dir, args.random_file)
random_scores = json.load(open(random_file))

print('\nCalculating the score gains...')
for key in scores:
if key == 'average':
gain = round(float(scores[key]['accuracy']) - float(random_scores[key]['accuracy']), 2)
scores[key]['acc_gain'] = gain
else:
for sub_key in scores[key]:
gain = round(
float(scores[key][sub_key]['accuracy']) - float(random_scores[key][sub_key]['accuracy']), 2)
scores[key][sub_key]['acc_gain'] = str(gain)

# save the score gains
print(f'\nSaving {scores_file}...')
save_json(scores, scores_file)
print('\nDone!')
Loading

0 comments on commit ac6e5c9

Please sign in to comment.