Skip to content

Latest commit

 

History

History
33 lines (29 loc) · 941 Bytes

README.md

File metadata and controls

33 lines (29 loc) · 941 Bytes

DDPG in bullet Gym using pytorch

Overview

This is an implementation of Deep Deterministic Policy Gradient (DDPG) in bullet Gym using PyTorch.

Dependencies

  • Python 3.6
  • PyTorch 0.3.0
  • openAI gym
  • pybullet

Run

  • here is a simple example to train CartPole with high efficiency:

$ python main.py --debug --discrete --env=CartPole-v0 --vis

  • you can using this to understand usage of each argument:

$ python main.py --help

  • some explanation of important arguments:

--debug: print the reward and some other information

--discrete: if the actions are discrete rather than continuous

--vis: render each action (but it would slow down your training speed)

--cuda: train this task using GPU

—test: testing mode

—resume : load model from the path

Contributors