This is an implementation of Deep Deterministic Policy Gradient (DDPG) in bullet Gym using PyTorch.
- Python 3.6.2
- pytorch 0.2.0
- gym
- tensorboardX-1.0
- pybullet (if you want to train agents for bullet env)
- here is a simple example to train CartPole with high efficiency:
$ cd base
$ python main.py --debug --discrete --env=CartPole-v0 --vis
- you can use this to understand usage of each argument:
$ python main.py --help
- some explanation of important arguments:
--debug: print the reward and some other information
--discrete: if the actions are discrete rather than continuous
--vis: render each action (but it would slow down your training speed)
--cuda: train this task using GPU
--test: testing mode
--resume : load model from the path
# run HalfCheetah-v1 with default parameters
cd ./baselines
python main.py