Skip to content

Implementation of the Deep Deterministic Policy Gradient(DDPG) in bullet Gym using pytorch

Notifications You must be signed in to change notification settings

megvii-research/pytorch-gym

Repository files navigation

DDPG in bullet Gym using pytorch

Overview

This is an implementation of Deep Deterministic Policy Gradient (DDPG) in bullet Gym using PyTorch.

Dependencies

  • Python 3.6.2
  • pytorch 0.2.0
  • gym
  • tensorboardX-1.0
  • pybullet (if you want to train agents for bullet env)

Run

  • here is a simple example to train CartPole with high efficiency:

$ cd base

$ python main.py --debug --discrete --env=CartPole-v0 --vis

  • you can use this to understand usage of each argument:

$ python main.py --help

  • some explanation of important arguments:

--debug: print the reward and some other information

--discrete: if the actions are discrete rather than continuous

--vis: render each action (but it would slow down your training speed)

--cuda: train this task using GPU

--test: testing mode

--resume : load model from the path

DDPG from baselines

# run HalfCheetah-v1 with default parameters
cd ./baselines
python main.py 

Contributors

About

Implementation of the Deep Deterministic Policy Gradient(DDPG) in bullet Gym using pytorch

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published