Skip to content

🔥 pure tensorflow Implement of YOLOv3 with support to train your own dataset

License

MIT, Unknown licenses found

Licenses found

MIT
LICENSE
Unknown
LICENSE.fuck
Notifications You must be signed in to change notification settings

PBRAOS/tensorflow-yolov3

 
 

Repository files navigation

Please install tensorflow-gpu 1.11.0 ! Since Tensorflow is fucking ridiculous !

part 1. Introduction [代码剖析]

Implementation of YOLO v3 object detector in Tensorflow. The full details are in this paper. In this project we cover several segments as follows:

YOLO paper is quick hard to understand, along side that paper. This repo enables you to have a quick understanding of YOLO Algorithmn.

part 2. Quick start

  1. Clone this file
$ git clone https://github.com/YunYang1994/tensorflow-yolov3.git
  1. You are supposed to install some dependencies before getting out hands with these codes.
$ cd tensorflow-yolov3
$ pip install -r ./docs/requirements.txt
  1. Exporting loaded COCO weights as TF checkpoint(yolov3_coco.ckpt)
$ cd checkpoint
$ wget https://github.com/YunYang1994/tensorflow-yolov3/releases/download/v1.0/yolov3_coco.tar.gz
$ tar -xvf yolov3_coco.tar.gz
$ cd ..
$ python convert_weight.py
$ python freeze_graph.py
  1. Then you will get some .pb files in the root path., and run the demo script
$ python image_demo.py
$ python video_demo.py # if use camera, set video_path = 0

image

part 3. Train your own dataset

Two files are required as follows:

xxx/xxx.jpg 18.19,6.32,424.13,421.83,20 323.86,2.65,640.0,421.94,20 
xxx/xxx.jpg 48,240,195,371,11 8,12,352,498,14
# image_path x_min, y_min, x_max, y_max, class_id  x_min, y_min ,..., class_id 
person
bicycle
car
...
toothbrush

3.1 Train VOC dataset

To help you understand my training process, I made this demo of training VOC PASCAL dataset

how to train it ?

Download VOC PASCAL trainval and test data

$ wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
$ wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
$ wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar

Extract all of these tars into one directory and rename them, which should have the following basic structure.


VOC           # path:  /home/yang/test/VOC/
├── test
|    └──VOCdevkit
|       └──VOC2007 (from VOCtest_06-Nov-2007.tar)
└── train
     └──VOCdevkit
             └──VOC2007 (from VOCtrainval_06-Nov-2007.tar)
                     └──VOC2012 (from VOCtrainval_11-May-2012.tar)
                     
$ python scripts/voc_annotation.py --data_path /home/yang/test/VOC

Then edit your ./core/config.py to make some necessary configurations

__C.YOLO.CLASSES                = "./data/classes/voc.names"
__C.TRAIN.ANNOT_PATH            = "./data/dataset/voc_train.txt"
__C.TEST.ANNOT_PATH             = "./data/dataset/voc_test.txt"

Here are two kinds of training method:

(1) train from scratch:
$ python train.py
$ tensorboard --logdir ./data
(2) train from COCO weights(recommend):
$ cd checkpoint
$ wget https://github.com/YunYang1994/tensorflow-yolov3/releases/download/v1.0/yolov3_coco.tar.gz
$ tar -xvf yolov3_coco.tar.gz
$ cd ..
$ python convert_weight.py --train_from_coco
$ python train.py

how to test and evaluate it ?

$ python evaluate.py
$ cd mAP
$ python main.py -na

if you are still unfamiliar with training pipline, you can join here to discuss with us.

3.2 Train other dataset

Download COCO trainval and test data

$ wget http://images.cocodataset.org/zips/train2017.zip
$ wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
$ wget http://images.cocodataset.org/zips/test2017.zip
$ wget http://images.cocodataset.org/annotations/image_info_test2017.zip 

part 4. Other Implementations

-YOLOv3目标检测有了TensorFlow实现,可用自己的数据来训练

- Implementing YOLO v3 in Tensorflow (TF-Slim)

- YOLOv3_TensorFlow

- Object Detection using YOLOv2 on Pascal VOC2012

-Understanding YOLO

About

🔥 pure tensorflow Implement of YOLOv3 with support to train your own dataset

Resources

License

MIT, Unknown licenses found

Licenses found

MIT
LICENSE
Unknown
LICENSE.fuck

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%