Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[LLM] Add client #2231

Draft
wants to merge 4 commits into
base: llm
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
164 changes: 164 additions & 0 deletions llm/fastdeploy_llm/Client.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,164 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import queue
import json
import sys
from functools import partial
import os
import time
import numpy as np
import subprocess
import tritonclient.grpc as grpcclient
from tritonclient.utils import *

import api_client


class UserData:

def __init__(self):
self._completed_requests = queue.Queue()


def callback(user_data, result, error):
if error:
user_data._completed_requests.put(error)
else:
user_data._completed_requests.put(result)


class grpcClient:

def __init__(self,
base_url: str,
model_name: str,
model_version: str = "1",
timeout: int = 100,
openai_port: int = None):
"""
Args:
base_url (`str`): inference server grpc url
model_name (`str`)
model_version (`str`): default "1"
timeout (`int`): inference timeout in seconds
openai_port (`int`)
"""
self._model_name = model_name
self._model_version = model_version
self.timeout = timeout
self._client = grpcclient.InferenceServerClient(base_url,
verbose=False)

error = self._verify_triton_state(self._client)
if error:
raise RuntimeError(
f"Could not communicate to Triton Server: {error}")

self.inputs = [
grpcclient.InferInput("IN", [1], np_to_triton_dtype(np.object_))
]
self.outputs = [grpcclient.InferRequestedOutput("OUT")]
self.has_init = False
self.user_data = UserData()

if openai_port is not None:
pd_cmd = "python3 api_client.py --url {0} --port {1} --model {2}".format(
base_url, openai_port, model_name)
subprocess.Popen(pd_cmd,
shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
preexec_fn=os.setsid)
time.sleep(5)

def _verify_triton_state(self, triton_client):
if not triton_client.is_server_live():
return f"Triton server {self._server_url} is not live"
elif not triton_client.is_server_ready():
return f"Triton server {self._server_url} is not ready"
elif not triton_client.is_model_ready(self._model_name,
self._model_version):
return f"Model {self._model_name}:{self._model_version} is not ready"
return None

def generate(self,
prompt: str,
request_id: str = "0",
top_p: float = 0.0,
temperature: float = 1.0,
max_dec_len: int = 1024,
min_dec_len: int = 2,
penalty_score: float = 1.0,
frequency_score: float = 0.99,
eos_token_id: int = 2,
presence_score: float = 0.0,
stream: bool = False):

req_dict = {
"text": prompt,
"topp": top_p,
"temperature": temperature,
"max_dec_len": max_dec_len,
"min_dec_len": min_dec_len,
"penalty_score": penalty_score,
"frequency_score": frequency_score,
"eos_token_id": eos_token_id,
"model_test": "test",
"presence_score": presence_score
}

try:
if not self.has_init:
self._client.start_stream(
callback=partial(callback, self.user_data))
self.has_init = True
else:
self.user_data.reset()
self.inputs = [
grpcclient.InferInput("IN", [1],
np_to_triton_dtype(np.object_))
]
self.outputs = [grpcclient.InferRequestedOutput("OUT")]

in_data = np.array([json.dumps(req_dict)], dtype=np.object_)
self.inputs[0].set_data_from_numpy(in_data)

self._client.async_stream_infer(model_name=self._model_name,
inputs=self.inputs,
request_id=request_id,
outputs=self.outputs)
if stream:
completion = []
else:
completion = ""
while True:
data_item = self.user_data._completed_requests.get(
timeout=self.timeout)
if type(data_item) == InferenceServerException:
print('Exception:', 'status', data_item.status(), 'msg',
data_item.message())
else:
results = data_item.as_numpy("OUT")[0]
data = json.loads(results)
if stream:
completion.append(data["result"])
else:
completion += data["result"]
if data.get("is_end", False):
break
return completion
except Exception as e:
print(f"Client infer error: {e}")
raise e
1 change: 1 addition & 0 deletions llm/fastdeploy_llm/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,3 +17,4 @@
from .task import Task, BatchTask
from .config import Config
from . import utils
from . import Client
Loading