Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Upsample #115

Merged
merged 14 commits into from
Jul 5, 2023
36 changes: 36 additions & 0 deletions paconvert/api_mapping.json
Original file line number Diff line number Diff line change
Expand Up @@ -8732,5 +8732,41 @@
"kwargs_change": {
"eps": "epsilon"
}
},
"torch.nn.Upsample": {
"Matcher": "GenericMatcher",
"paddle_api": "paddle.nn.Upsample",
"args_list": [
"size",
"scale_factor",
"mode",
"align_corners"
],
"unsupport_args": [
"recompute_scale_factor"
]
},
"torch.utils.data.SequentialSampler": {
"Matcher": "GenericMatcher",
"paddle_api": "paddle.io.SequenceSampler",
"args_list": [
"data_source"
]
},
"torch.utils.cpp_extension.CUDAExtension": {
"Matcher": "UtilsCppExtensionMatcher",
"paddle_api": "paddle.utils.cpp_extension.CUDAExtension",
"args_list": [
"name",
"sources"
]
},
"torch.utils.cpp_extension.CppExtension": {
"Matcher": "UtilsCppExtensionMatcher",
"paddle_api": "paddle.utils.cpp_extension.CppExtension",
"args_list": [
"name",
"sources"
]
}
}
17 changes: 17 additions & 0 deletions paconvert/api_matcher.py
Original file line number Diff line number Diff line change
Expand Up @@ -3645,3 +3645,20 @@ class SizeAverageMatcher(BaseMatcher):
def generate_code(self, kwargs):
process_reduce_and_size_average(kwargs)
return GenericMatcher.generate_code(self, kwargs)


class UtilsCppExtensionMatcher(BaseMatcher):
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个直接用genericamatcher,如果你要删掉某个参数,可设置kwargs_change: name: ""

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

def generate_code(self, kwargs):
new_kwargs = {}
for k in kwargs.keys():
if "name" in k:
continue
new_kwargs[k] = kwargs[k]
return GenericMatcher.generate_code(self, new_kwargs)


class TensorIsSpareMatcher(BaseMatcher):
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

可以起个公用一些的名字,这样其他人也可以复用了

就叫Attribute2Func吧

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

def get_paddle_class_attribute_nodes(self, node):
self.parse_func(node)
code = "{}()".format(self.paddle_api)
return ast.parse(code).body[0].value
5 changes: 4 additions & 1 deletion paconvert/attribute_mapping.json
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,10 @@
"Matcher": "TensorRequires_GradMatcher",
"paddle_api": "paddle.Tensor.stop_gradient"
},
"torch.Tensor.is_sparse": {},
"torch.Tensor.is_sparse": {
"Matcher": "TensorIsSpareMatcher",
"paddle_api": "paddle.Tensor.is_sparse"
},
"torch.Tensor.is_cuda": {},
"torch.Tensor.is_quantized": {},
"torch.Tensor.is_meta": {},
Expand Down
32 changes: 32 additions & 0 deletions tests/test_Tensor_is_sparse.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import textwrap

from apibase import APIBase

obj = APIBase("torch.Tensor.is_sparse")


def test_case_1():
pytorch_code = textwrap.dedent(
"""
import torch
a = torch.tensor([[ 0.9254, -0.6213]])
result = a.is_sparse
"""
)
obj.run(pytorch_code, ["result"])


test_case_1()
Copy link
Collaborator

@zhwesky2010 zhwesky2010 Jun 26, 2023

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个需要删掉

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

127 changes: 127 additions & 0 deletions tests/test_nn_Upsample.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,127 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import textwrap

from apibase import APIBase

obj = APIBase("torch.nn.Upsample")


def test_case_1():
pytorch_code = textwrap.dedent(
"""
import torch
input = torch.tensor([[[[ 1.1524, 0.4714, 0.2857],
[-1.2533, -0.9829, -1.0981],
[ 0.1507, -1.1431, -2.0361]],

[[ 0.1024, -0.4482, 0.4137],
[ 0.9385, 0.4565, 0.7702],
[ 0.4135, -0.2587, 0.0482]]]])
m = torch.nn.Upsample(scale_factor=2, mode='nearest')
result = m(input)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_2():
pytorch_code = textwrap.dedent(
"""
import torch
input = torch.tensor([[[[ 1.1524, 0.4714, 0.2857],
[-1.2533, -0.9829, -1.0981],
[ 0.1507, -1.1431, -2.0361]],

[[ 0.1024, -0.4482, 0.4137],
[ 0.9385, 0.4565, 0.7702],
[ 0.4135, -0.2587, 0.0482]]]])
m = torch.nn.Upsample(scale_factor=2, mode='bilinear')
result = m(input)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_3():
pytorch_code = textwrap.dedent(
"""
import torch
input = torch.tensor([[[[ 1.1524, 0.4714, 0.2857],
[-1.2533, -0.9829, -1.0981],
[ 0.1507, -1.1431, -2.0361]],

[[ 0.1024, -0.4482, 0.4137],
[ 0.9385, 0.4565, 0.7702],
[ 0.4135, -0.2587, 0.0482]]]])
m = torch.nn.Upsample(scale_factor=2, mode='bilinear',align_corners=True)
result = m(input)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_4():
pytorch_code = textwrap.dedent(
"""
import torch
input = torch.tensor([[[[ 1.1524, 0.4714, 0.2857],
[-1.2533, -0.9829, -1.0981],
[ 0.1507, -1.1431, -2.0361]],

[[ 0.1024, -0.4482, 0.4137],
[ 0.9385, 0.4565, 0.7702],
[ 0.4135, -0.2587, 0.0482]]]])
m = torch.nn.Upsample(size=(2,2))
result = m(input)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_5():
pytorch_code = textwrap.dedent(
"""
import torch
input = torch.tensor([[[[ 1.1524, 0.4714, 0.2857],
[-1.2533, -0.9829, -1.0981],
[ 0.1507, -1.1431, -2.0361]],

[[ 0.1024, -0.4482, 0.4137],
[ 0.9385, 0.4565, 0.7702],
[ 0.4135, -0.2587, 0.0482]]]])
m = torch.nn.Upsample(scale_factor=2, mode='bilinear',align_corners=False)
result = m(input)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_6():
pytorch_code = textwrap.dedent(
"""
import torch
input = torch.tensor([[[[ 1.1524, 0.4714, 0.2857],
[-1.2533, -0.9829, -1.0981],
[ 0.1507, -1.1431, -2.0361]],

[[ 0.1024, -0.4482, 0.4137],
[ 0.9385, 0.4565, 0.7702],
[ 0.4135, -0.2587, 0.0482]]]])
m = torch.nn.Upsample(scale_factor=2, mode='bilinear',recompute_scale_factor=True)
result = m(input)
"""
)
obj.run(pytorch_code, unsupport=True, reason="paddle unsupport")
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个原因要写具体一点

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

36 changes: 36 additions & 0 deletions tests/test_utils_cpp_extension_CUDAExtension.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import textwrap

from apibase import APIBase

obj = APIBase("torch.utils.cpp_extension.CUDAExtension")


# The cuda compile not supports
def test_case_1():
pytorch_code = textwrap.dedent(
"""
from torch.utils.cpp_extension import CUDAExtension

CUDAExtension(
name='cuda_extension',
sources=['extension.cpp', 'extension_kernel.cu'],
extra_compile_args={'cxx': ['-g'],
'nvcc': ['-O2']})
result = True
"""
)
obj.run(pytorch_code, ["result"])
35 changes: 35 additions & 0 deletions tests/test_utils_cpp_extension_CppExtension.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import textwrap

from apibase import APIBase

obj = APIBase("torch.utils.cpp_extension.CppExtension")


# The cpp compile not supports
def test_case_1():
pytorch_code = textwrap.dedent(
"""
from torch.utils.cpp_extension import CppExtension

CppExtension(
name='cuda_extension',
sources=['extension.cpp'],
extra_compile_args=['-g'])
result = True
"""
)
obj.run(pytorch_code, ["result"])
Loading