Skip to content

Commit

Permalink
[CodeStyle][Typos][O-22] Fix typo (outout,ouput,ouptut,outpout,Ouput) (
Browse files Browse the repository at this point in the history
  • Loading branch information
enkilee authored Feb 8, 2025
1 parent 572589f commit e26f31e
Show file tree
Hide file tree
Showing 17 changed files with 50 additions and 55 deletions.
5 changes: 0 additions & 5 deletions _typos.toml
Original file line number Diff line number Diff line change
Expand Up @@ -54,11 +54,6 @@ vaccum = 'vaccum'
# These words need to be fixed
Operants = 'Operants'
operants = 'operants'
outout = 'outout'
ouput = 'ouput'
outpout = 'outpout'
ouptut = 'ouptut'
Ouput = 'Ouput'
setted = 'setted'
storeage = 'storeage'
sotring = 'sotring'
Expand Down
2 changes: 1 addition & 1 deletion paddle/cinn/hlir/pe/nn.h
Original file line number Diff line number Diff line change
Expand Up @@ -464,7 +464,7 @@ ir::Tensor DropoutInfer(
* out = true_value
* 2. condition expr = false
* out = false_value
* @param ouput_name : the name of the output tensor.
* @param output_name : the name of the output tensor.
*/
ir::Tensor Select(const ir::Tensor &condition,
const ir::Tensor &true_value,
Expand Down
2 changes: 1 addition & 1 deletion paddle/cinn/hlir/pe/reduction.cc
Original file line number Diff line number Diff line change
Expand Up @@ -345,7 +345,7 @@ std::vector<Tensor> WarpReduce(const ir::Tensor& A,
},
UniqName(output_name + "_" + reduce_type));

// compute ouput shape.
// compute output shape.
std::vector<Expr> out_shape(A->shape.begin(),
A->shape.begin() + shape_size_without_reduce_dim);
for (int idx = 0; idx < last_reduce_dim_num && keep_dim; ++idx) {
Expand Down
2 changes: 1 addition & 1 deletion paddle/cinn/operator_fusion/utils.cc
Original file line number Diff line number Diff line change
Expand Up @@ -158,7 +158,7 @@ std::vector<std::pair<size_t, size_t>> GetNonBroadCastDims(pir::Operation* op) {
PADDLE_ENFORCE_GE(output_rank,
input_rank,
::common::errors::PreconditionNotMet(
"[Error info] The ouput_rank should "
"[Error info] The output_rank should "
"be greater or equal to input_rank."));

// Compare axis one by one, from back to front.
Expand Down
4 changes: 2 additions & 2 deletions paddle/fluid/framework/ir/graph_helper.cc
Original file line number Diff line number Diff line change
Expand Up @@ -450,7 +450,7 @@ std::vector<ir::Node *> TopologySortGraphByDescOrder(const Graph &graph) {
return ret;
}

void RemoveControlDepInputAndOuput(OpDesc *op_desc) {
void RemoveControlDepInputAndOutput(OpDesc *op_desc) {
auto remove_control_dep_var = [](VariableNameMap *var_name_map) {
for (auto &pair : *var_name_map) {
std::vector<std::string> &var_names = pair.second;
Expand Down Expand Up @@ -736,7 +736,7 @@ static void GraphToBlock(const Graph &graph,
GetGraphOpDesc(nodes, block, &ops, graph, graph_idx);

for (auto &op : ops) {
RemoveControlDepInputAndOuput(&op);
RemoveControlDepInputAndOutput(&op);
block->add_ops()->MergeFrom(*op.Proto());
}
}
Expand Down
2 changes: 1 addition & 1 deletion paddle/fluid/framework/ir/graph_pattern_detector.cc
Original file line number Diff line number Diff line change
Expand Up @@ -4646,7 +4646,7 @@ PDNode *patterns::FusedFeedForwardBwd::operator()(
// other cases: may delete residual_add_grad, dropout1_grad, dropout2_grad
// operators

// intermediate input_grad, and final pattern ouput_grad
// intermediate input_grad, and final pattern output_grad
PDNode *out_grad = x_grad;
// LayerNorm: in["Mean", "Variance", "Scale", "Bias", "Y@GRAD"],
// out["X@GRAD", "Scale@GRAD", "Bias@GRAD"]
Expand Down
16 changes: 8 additions & 8 deletions paddle/fluid/inference/openvino/engine.cc
Original file line number Diff line number Diff line change
Expand Up @@ -27,18 +27,18 @@ bool OpenVINOEngine::IsModelStatic() {
return isStatic;
}

ov::Shape OpenVINOEngine::GetOuputShape(const std::string& output_name,
int64_t index) {
ov::Shape OpenVINOEngine::GetOutputShape(const std::string& output_name,
int64_t index) {
auto ov_output_shape =
HaveOutputTensorName(output_name)
? infer_request_.get_tensor(output_name).get_shape()
: infer_request_.get_output_tensor(index).get_shape();
return ov_output_shape;
}

phi::DataType OpenVINOEngine::GetOuputType(const std::string& output_name,
int64_t index,
ov::element::Type ov_paddle_type) {
phi::DataType OpenVINOEngine::GetOutputType(const std::string& output_name,
int64_t index,
ov::element::Type ov_paddle_type) {
auto output_ov_type =
HaveOutputTensorName(output_name)
? infer_request_.get_tensor(output_name).get_element_type()
Expand All @@ -56,9 +56,9 @@ phi::DataType OpenVINOEngine::GetOuputType(const std::string& output_name,
return OVType2PhiType(output_ov_type);
}

void OpenVINOEngine::CopyOuputDataByName(const std::string& output_name,
int64_t index,
void* pd_data) {
void OpenVINOEngine::CopyOutputDataByName(const std::string& output_name,
int64_t index,
void* pd_data) {
auto ov_tensor = HaveOutputTensorName(output_name)
? infer_request_.get_tensor(output_name)
: infer_request_.get_output_tensor(index);
Expand Down
14 changes: 7 additions & 7 deletions paddle/fluid/inference/openvino/engine.h
Original file line number Diff line number Diff line change
Expand Up @@ -174,13 +174,13 @@ class OpenVINOEngine {
ov::Model* model() { return model_.get(); }
ov::CompiledModel compiled_model() { return complied_model_; }
ov::InferRequest infer_request() { return infer_request_; }
ov::Shape GetOuputShape(const std::string& name, int64_t index);
phi::DataType GetOuputType(const std::string& name,
int64_t index,
ov::element::Type ov_paddle_type);
void CopyOuputDataByName(const std::string& output_name,
int64_t index,
void* pd_data);
ov::Shape GetOutputShape(const std::string& name, int64_t index);
phi::DataType GetOutputType(const std::string& name,
int64_t index,
ov::element::Type ov_paddle_type);
void CopyOutputDataByName(const std::string& output_name,
int64_t index,
void* pd_data);
void Execute();

private:
Expand Down
6 changes: 3 additions & 3 deletions paddle/fluid/operators/openvino/openvino_engine_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -214,8 +214,8 @@ class OpenVINOEngineOp : public framework::OperatorBase {
common::errors::NotFound(
"Output variable %s is not found in Openvino subgraph.", y));
auto *fluid_t = fluid_v->GetMutable<phi::DenseTensor>();
auto ov_output_shape = engine->GetOuputShape(output_names_[i], i);
auto phi_type = engine->GetOuputType(
auto ov_output_shape = engine->GetOutputShape(output_names_[i], i);
auto phi_type = engine->GetOutputType(
output_names_[i],
i,
inference::openvino::VarType2OVType(ori_var_type));
Expand All @@ -224,7 +224,7 @@ class OpenVINOEngineOp : public framework::OperatorBase {
ddim.push_back(ov_output_shape[j]);
}
fluid_t->Resize(common::make_ddim(ddim));
engine->CopyOuputDataByName(
engine->CopyOutputDataByName(
output_names_[i], i, fluid_t->mutable_data(dev_place, phi_type));
}
}
Expand Down
8 changes: 4 additions & 4 deletions paddle/phi/infermeta/spmd_rules/default_data_parallel.h
Original file line number Diff line number Diff line change
Expand Up @@ -24,10 +24,10 @@ namespace phi {
namespace distributed {
/**
* A **hack** rule with a strong assumption that the first dimension of
* all the input and ouput tensors is the batch dimension (broadcast dimension),
* therefore, if any tensor's first dimension is sharded, the sharding would be
* propagating to all the other tensors (for tensor first dimension). All the
* other axes of tensors would be set as unshard (-1).
* all the input and output tensors is the batch dimension (broadcast
* dimension), therefore, if any tensor's first dimension is sharded, the
* sharding would be propagating to all the other tensors (for tensor first
* dimension). All the other axes of tensors would be set as unshard (-1).
*
*
* This rule is used to support emerging op for hybrid parallelism quickly, and
Expand Down
4 changes: 2 additions & 2 deletions paddle/phi/kernels/funcs/interpolate_function.h
Original file line number Diff line number Diff line change
Expand Up @@ -190,10 +190,10 @@ struct FastDivModForInterpolate {

explicit HOSTDEVICE FastDivModForInterpolate(const int channels,
const int output_w,
const int outout_wc)
const int output_wc)
: channels_div(FastDivMod(channels)),
output_w_div(FastDivMod(output_w)),
output_wc_div(FastDivMod(outout_wc)) {}
output_wc_div(FastDivMod(output_wc)) {}
};

#endif
Expand Down
24 changes: 12 additions & 12 deletions paddle/phi/kernels/funcs/pooling.cu
Original file line number Diff line number Diff line change
Expand Up @@ -312,10 +312,10 @@ __global__ void KernelPool2DGrad(const int nthreads,
int output_sub_idx =
channel_last ? tmp_idx * divmods.channel.divisor + c_offset
: tmp_idx;
T ouput_value = pool_process.use_x ? output_data[output_sub_idx]
: static_cast<T>(0);
T output_value = pool_process.use_x ? output_data[output_sub_idx]
: static_cast<T>(0);
pool_process.compute(input,
ouput_value,
output_value,
output_grad[output_sub_idx],
static_cast<T>(1.0 / pool_size),
&input_grad_data);
Expand Down Expand Up @@ -343,10 +343,10 @@ __global__ void KernelPool2DGrad(const int nthreads,
int output_sub_idx =
channel_last ? tmp_idx * divmods.channel.divisor + c_offset
: tmp_idx;
T ouput_value = pool_process.use_x ? output_data[output_sub_idx]
: static_cast<T>(0);
T output_value = pool_process.use_x ? output_data[output_sub_idx]
: static_cast<T>(0);
pool_process.compute(input,
ouput_value,
output_value,
output_grad[output_sub_idx],
static_cast<T>(1.0 / pool_size),
&input_grad_data);
Expand All @@ -360,10 +360,10 @@ __global__ void KernelPool2DGrad(const int nthreads,
int output_sub_idx =
channel_last ? tmp_idx * divmods.channel.divisor + c_offset
: tmp_idx;
T ouput_value = pool_process.use_x ? output_data[output_sub_idx]
: static_cast<T>(0);
T output_value = pool_process.use_x ? output_data[output_sub_idx]
: static_cast<T>(0);
pool_process.compute(input,
ouput_value,
output_value,
output_grad[output_sub_idx],
static_cast<T>(1.0 / pool_size),
&input_grad_data);
Expand Down Expand Up @@ -1267,10 +1267,10 @@ __global__ void KernelPool3DGrad(const int nthreads,
? ((pd * output_height + ph) * output_width + pw) * channels +
c_offset
: (pd * output_height + ph) * output_width + pw;
T ouput_value = pool_process.use_x ? output_data[output_sub_idx]
: static_cast<T>(0);
T output_value = pool_process.use_x ? output_data[output_sub_idx]
: static_cast<T>(0);
pool_process.compute(input,
ouput_value,
output_value,
output_grad[output_sub_idx],
static_cast<T>(1.0 / pool_size),
&input_grad_data);
Expand Down
2 changes: 1 addition & 1 deletion paddle/phi/kernels/impl/bessel_grad_kernel_cuda_impl.h
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ struct CudaI0GradFunctor {
using MT = typename phi::dtype::MPTypeTrait<T>::Type;
const MT mp_x = static_cast<MT>(_x);
const MT mp_out_grad = static_cast<MT>(_out_grad);
// get ouput of i1
// get output of i1
MT x = std::abs(mp_x);
if (x <= MT{8.0}) {
auto coeff_pair_A = ChebyshevCoefficientsI1e_A<MT>();
Expand Down
2 changes: 1 addition & 1 deletion paddle/pir/include/core/operation.h
Original file line number Diff line number Diff line change
Expand Up @@ -126,7 +126,7 @@ class IR_API alignas(8) Operation final
void *value_property(const std::string &key, size_t index) const;

///
/// \brief op ouput related public interfaces
/// \brief op output related public interfaces
///
uint32_t num_results() const { return num_results_; }
Value result(uint32_t index) const { return OpResult(op_result_impl(index)); }
Expand Down
6 changes: 3 additions & 3 deletions python/paddle/distributed/auto_parallel/static/engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -1378,7 +1378,7 @@ def _initialize(self, mode, init_parameters=True):
self.program_helper.init_pir(
self._pir_dist_main_progs[mode], self._place
)
changed_ouput_op_list = []
changed_output_op_list = []
if self._executor is None:
self._executor = paddle.static.Executor(self._place)
startup_prog = self._startup_progs[mode].clone()
Expand Down Expand Up @@ -1436,7 +1436,7 @@ def _initialize(self, mode, init_parameters=True):
)
if src_value.persistable:
src_value.persistable = False
changed_ouput_op_list.append(op)
changed_output_op_list.append(op)
op.operand(0).set_source(reshard_var)
for del_op in del_ops:
del_op.erase()
Expand All @@ -1446,7 +1446,7 @@ def _initialize(self, mode, init_parameters=True):
paddle.base.libpaddle.pir.apply_dist2dense_pass(startup_prog)
remove_unuseful_comm_op_pass(startup_prog)

for op in changed_ouput_op_list:
for op in changed_output_op_list:
op.operand_source(0).persistable = True
self._executor.run(startup_prog)
if self._job_plan is not None:
Expand Down
2 changes: 1 addition & 1 deletion python/paddle/jit/dy2static/program_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -136,7 +136,7 @@ def check_view_api_used_by_inplace(program: paddle.pir.Program) -> None:
skipped_inplace_ops = [
"pd_op.set_value_",
"pd_op.set_value_with_tensor_",
# It willn't change tensor imdeiately,but it's ouput is dangerous.
# It willn't change tensor imdeiately,but it's output is dangerous.
"pd_op.share_data_",
]

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,7 @@ def generate_scale_bias():
"Scale": ["affine_channel_scale"],
"Bias": ["affine_channel_bias"],
},
outputs={"Out": ["affine_channel_ouput"]},
outputs={"Out": ["affine_channel_output"]},
data_layout=data_format,
)
if has_bias:
Expand All @@ -121,7 +121,7 @@ def generate_scale_bias():
data_gen=partial(generate_scale_bias)
),
},
outputs=["affine_channel_ouput"],
outputs=["affine_channel_output"],
)
if has_bias:
program_config.weights["conv2d_bias"] = TensorConfig(
Expand Down

0 comments on commit e26f31e

Please sign in to comment.