Skip to content

Commit

Permalink
Merge pull request JuliaStats#417 from yuyichao/0.4-binding
Browse files Browse the repository at this point in the history
Fix 0.4 deprecation warnings
  • Loading branch information
johnmyleswhite committed Sep 20, 2015
2 parents 0fa0e23 + ba5787d commit 3bf11d1
Show file tree
Hide file tree
Showing 11 changed files with 38 additions and 41 deletions.
3 changes: 2 additions & 1 deletion .travis.yml
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,8 @@ os:
- linux
- osx
julia:
- release
- 0.3
- 0.4
- nightly
notifications:
email: false
Expand Down
4 changes: 2 additions & 2 deletions doc/source/multivariate.rst
Original file line number Diff line number Diff line change
Expand Up @@ -144,7 +144,7 @@ We realize that the mean vector and the covariance often have special forms in p

.. code-block:: julia
immutable MvNormal{Cov<:AbstractPDMat,Mean<:Union(Vector{Float64},ZeroVector{Float64})} <: AbstractMvNormal
immutable MvNormal{Cov<:AbstractPDMat,Mean<:Union{Vector{Float64},ZeroVector{Float64}}} <: AbstractMvNormal
μ::Mean
Σ::Cov
end
Expand Down Expand Up @@ -237,7 +237,7 @@ The canonical parameterization is widely used in Bayesian analysis. We provide a

.. code:: julia
immutable MvNormalCanon{P<:AbstractPDMat,V<:Union(Vector{Float64},ZeroVector{Float64})} <: AbstractMvNormal
immutable MvNormalCanon{P<:AbstractPDMat,V<:Union{Vector{Float64},ZeroVector{Float64}}} <: AbstractMvNormal
μ::V # the mean vector
h::V # potential vector, i.e. inv(Σ) * μ
J::P # precision matrix, i.e. inv(Σ)
Expand Down
2 changes: 1 addition & 1 deletion doc/source/types.rst
Original file line number Diff line number Diff line change
Expand Up @@ -106,7 +106,7 @@ To simplify the use in practice, we introduce a series of type alias as follows:
typealias UnivariateDistribution{S<:ValueSupport} Distribution{Univariate,S}
typealias MultivariateDistribution{S<:ValueSupport} Distribution{Multivariate,S}
typealias MatrixDistribution{S<:ValueSupport} Distribution{Matrixvariate,S}
typealias NonMatrixDistribution Union(UnivariateDistribution, MultivariateDistribution)
typealias NonMatrixDistribution Union{UnivariateDistribution, MultivariateDistribution}
typealias DiscreteDistribution{F<:VariateForm} Distribution{F,Discrete}
typealias ContinuousDistribution{F<:VariateForm} Distribution{F,Continuous}
Expand Down
4 changes: 2 additions & 2 deletions src/common.jl
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ abstract Distribution{F<:VariateForm,S<:ValueSupport} <: Sampleable{F,S}
typealias UnivariateDistribution{S<:ValueSupport} Distribution{Univariate,S}
typealias MultivariateDistribution{S<:ValueSupport} Distribution{Multivariate,S}
typealias MatrixDistribution{S<:ValueSupport} Distribution{Matrixvariate,S}
typealias NonMatrixDistribution Union(UnivariateDistribution, MultivariateDistribution)
@compat typealias NonMatrixDistribution Union{UnivariateDistribution, MultivariateDistribution}

typealias DiscreteDistribution{F<:VariateForm} Distribution{F,Discrete}
typealias ContinuousDistribution{F<:VariateForm} Distribution{F,Continuous}
Expand All @@ -64,4 +64,4 @@ abstract SufficientStats
abstract IncompleteDistribution

typealias DistributionType{D<:Distribution} Type{D}
typealias IncompleteFormulation Union(DistributionType,IncompleteDistribution)
@compat typealias IncompleteFormulation Union{DistributionType,IncompleteDistribution}
2 changes: 1 addition & 1 deletion src/multivariate/dirichlet.jl
Original file line number Diff line number Diff line change
Expand Up @@ -143,7 +143,7 @@ end

# sampling

function _rand!{T<:Real}(d::Union(Dirichlet,DirichletCanon), x::AbstractVector{T})
@compat function _rand!{T<:Real}(d::Union{Dirichlet,DirichletCanon}, x::AbstractVector{T})
s = 0.0
n = length(x)
α = d.alpha
Expand Down
2 changes: 1 addition & 1 deletion src/multivariate/mvnormal.jl
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ _pdf!{T<:Real}(r::DenseArray, d::AbstractMvNormal, x::AbstractMatrix{T}) = exp!(
#
###########################################################

immutable MvNormal{Cov<:AbstractPDMat,Mean<:Union(Vector{Float64},ZeroVector{Float64})} <: AbstractMvNormal
@compat immutable MvNormal{Cov<:AbstractPDMat,Mean<:Union{Vector{Float64},ZeroVector{Float64}}} <: AbstractMvNormal
μ::Mean
Σ::Cov
end
Expand Down
24 changes: 11 additions & 13 deletions src/multivariate/mvnormalcanon.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,50 +2,50 @@

### Generic types

immutable MvNormalCanon{P<:AbstractPDMat,V<:Union(Vector{Float64},ZeroVector{Float64})} <: AbstractMvNormal
@compat immutable MvNormalCanon{P<:AbstractPDMat,V<:Union{Vector{Float64},ZeroVector{Float64}}} <: AbstractMvNormal
μ::V # the mean vector
h::V # potential vector, i.e. inv(Σ) * μ
J::P # precision matrix, i.e. inv(Σ)
end

typealias FullNormalCanon MvNormalCanon{PDMat,Vector{Float64}}
typealias DiagNormalCanon MvNormalCanon{PDiagMat,Vector{Float64}}
typealias FullNormalCanon MvNormalCanon{PDMat,Vector{Float64}}
typealias DiagNormalCanon MvNormalCanon{PDiagMat,Vector{Float64}}
typealias IsoNormalCanon MvNormalCanon{ScalMat,Vector{Float64}}

typealias ZeroMeanFullNormalCanon MvNormalCanon{PDMat,ZeroVector{Float64}}
typealias ZeroMeanDiagNormalCanon MvNormalCanon{PDiagMat,ZeroVector{Float64}}
typealias ZeroMeanFullNormalCanon MvNormalCanon{PDMat,ZeroVector{Float64}}
typealias ZeroMeanDiagNormalCanon MvNormalCanon{PDiagMat,ZeroVector{Float64}}
typealias ZeroMeanIsoNormalCanon MvNormalCanon{ScalMat,ZeroVector{Float64}}


### Constructors

function MvNormalCanon{P<:AbstractPDMat}::Vector{Float64}, h::Vector{Float64}, J::P)
function MvNormalCanon{P<:AbstractPDMat}::Vector{Float64}, h::Vector{Float64}, J::P)
length(μ) == length(h) == dim(J) || throw(DimensionMismatch("Inconsistent argument dimensions"))
MvNormalCanon{P,Vector{Float64}}(μ, h, J)
end

function MvNormalCanon{P<:AbstractPDMat}(J::P)
function MvNormalCanon{P<:AbstractPDMat}(J::P)
z = ZeroVector(Float64, dim(J))
MvNormalCanon{P,ZeroVector{Float64}}(z, z, J)
end

function MvNormalCanon{P<:AbstractPDMat}(h::Vector{Float64}, J::P)
function MvNormalCanon{P<:AbstractPDMat}(h::Vector{Float64}, J::P)
length(h) == dim(J) || throw(DimensionMismatch("Inconsistent argument dimensions"))
MvNormalCanon{P,Vector{Float64}}(J \ h, h, J)
end

MvNormalCanon(h::Vector{Float64}, J::Matrix{Float64}) = MvNormalCanon(h, PDMat(J))
MvNormalCanon(h::Vector{Float64}, prec::Vector{Float64}) = MvNormalCanon(h, PDiagMat(prec))
MvNormalCanon(h::Vector{Float64}, prec::Float64) = MvNormalCanon(h, ScalMat(length(h), prec))
MvNormalCanon(h::Vector{Float64}, prec::Float64) = MvNormalCanon(h, ScalMat(length(h), prec))

MvNormalCanon(J::Matrix{Float64}) = MvNormalCanon(PDMat(J))
MvNormalCanon(prec::Vector{Float64}) = MvNormalCanon(PDiagMat(prec))
MvNormalCanon(d::Int, prec::Float64) = MvNormalCanon(ScalMat(d, prec))
MvNormalCanon(d::Int, prec::Float64) = MvNormalCanon(ScalMat(d, prec))


### Show

distrname(d::IsoNormalCanon) = "IsoNormalCanon"
distrname(d::IsoNormalCanon) = "IsoNormalCanon"
distrname(d::DiagNormalCanon) = "DiagNormalCanon"
distrname(d::FullNormalCanon) = "FullNormalCanon"

Expand Down Expand Up @@ -85,5 +85,3 @@ unwhiten_winv!(J::PDiagMat, x::DenseVecOrMat) = whiten!(J, x)
unwhiten_winv!(J::ScalMat, x::DenseVecOrMat) = whiten!(J, x)

_rand!(d::MvNormalCanon, x::DenseVecOrMat) = add!(unwhiten_winv!(d.J, randn!(x)), d.μ)


9 changes: 4 additions & 5 deletions src/multivariates.jl
Original file line number Diff line number Diff line change
@@ -1,16 +1,15 @@

##### Generic methods #####

## sampling

function rand!(d::MultivariateDistribution, x::DenseVector)
length(x) == length(d) ||
length(x) == length(d) ||
throw(DimensionMismatch("Output size inconsistent with sample length."))
_rand!(d, x)
end

function rand!(d::MultivariateDistribution, A::DenseMatrix)
size(A,1) == length(d) ||
size(A,1) == length(d) ||
throw(DimensionMismatch("Output size inconsistent with sample length."))
_rand!(sampler(d), A)
end
Expand All @@ -20,7 +19,7 @@ rand(d::MultivariateDistribution, n::Int) = _rand!(sampler(d), Array(eltype(d),

## domain

function insupport!{D<:MultivariateDistribution}(r::AbstractArray, d::Union(D,Type{D}), X::AbstractMatrix)
@compat function insupport!{D<:MultivariateDistribution}(r::AbstractArray, d::Union{D,Type{D}}, X::AbstractMatrix)
n = length(r)
size(X) == (length(d),n) ||
throw(DimensionMismatch("Inconsistent array dimensions."))
Expand All @@ -30,7 +29,7 @@ function insupport!{D<:MultivariateDistribution}(r::AbstractArray, d::Union(D,Ty
return r
end

insupport{D<:MultivariateDistribution}(d::Union(D,Type{D}), X::AbstractMatrix) =
@compat insupport{D<:MultivariateDistribution}(d::Union{D,Type{D}}, X::AbstractMatrix) =
insupport!(BitArray(size(X,2)), d, X)

## statistics
Expand Down
3 changes: 1 addition & 2 deletions src/truncate.jl
Original file line number Diff line number Diff line change
@@ -1,4 +1,3 @@

immutable Truncated{D<:UnivariateDistribution, S<:ValueSupport} <: UnivariateDistribution{S}
untruncated::D # the original distribution (untruncated)
lower::Float64 # lower bound
Expand Down Expand Up @@ -30,7 +29,7 @@ isupperbounded(d::Truncated) = isupperbounded(d.untruncated) || isfinite(d.upper
minimum(d::Truncated) = max(minimum(d.untruncated), d.lower)
maximum(d::Truncated) = min(maximum(d.untruncated), d.upper)

insupport{D<:UnivariateDistribution}(d::Truncated{D,Union(Discrete,Continuous)}, x::Real) =
@compat insupport{D<:UnivariateDistribution}(d::Truncated{D,Union{Discrete,Continuous}}, x::Real) =
d.lower <= x <= d.upper && insupport(d.untruncated, x)


Expand Down
24 changes: 12 additions & 12 deletions src/univariates.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,15 +11,15 @@ minimum(r::RealInterval) = r.lb
maximum(r::RealInterval) = r.ub
@compat in(x::Real, r::RealInterval) = (r.lb <= Float64(x) <= r.ub)

isbounded{D<:UnivariateDistribution}(d::Union(D,Type{D})) = isupperbounded(d) && islowerbounded(d)
@compat isbounded{D<:UnivariateDistribution}(d::Union{D,Type{D}}) = isupperbounded(d) && islowerbounded(d)

islowerbounded{D<:UnivariateDistribution}(d::Union(D,Type{D})) = minimum(d) > -Inf
isupperbounded{D<:UnivariateDistribution}(d::Union(D,Type{D})) = maximum(d) < +Inf
@compat islowerbounded{D<:UnivariateDistribution}(d::Union{D,Type{D}}) = minimum(d) > -Inf
@compat isupperbounded{D<:UnivariateDistribution}(d::Union{D,Type{D}}) = maximum(d) < +Inf

hasfinitesupport{D<:DiscreteUnivariateDistribution}(d::Union(D,Type{D})) = isbounded(d)
hasfinitesupport{D<:ContinuousUnivariateDistribution}(d::Union(D,Type{D})) = false
@compat hasfinitesupport{D<:DiscreteUnivariateDistribution}(d::Union{D,Type{D}}) = isbounded(d)
@compat hasfinitesupport{D<:ContinuousUnivariateDistribution}(d::Union{D,Type{D}}) = false

function insupport!{D<:UnivariateDistribution}(r::AbstractArray, d::Union(D,Type{D}), X::AbstractArray)
@compat function insupport!{D<:UnivariateDistribution}(r::AbstractArray, d::Union{D,Type{D}}, X::AbstractArray)
length(r) == length(X) ||
throw(DimensionMismatch("Inconsistent array dimensions."))
for i in 1 : length(X)
Expand All @@ -28,22 +28,22 @@ function insupport!{D<:UnivariateDistribution}(r::AbstractArray, d::Union(D,Type
return r
end

insupport{D<:UnivariateDistribution}(d::Union(D,Type{D}), X::AbstractArray) =
@compat insupport{D<:UnivariateDistribution}(d::Union{D,Type{D}}, X::AbstractArray) =
insupport!(BitArray(size(X)), d, X)

insupport{D<:ContinuousUnivariateDistribution}(d::Union(D,Type{D}),x::Real) = minimum(d) <= x <= maximum(d)
insupport{D<:DiscreteUnivariateDistribution}(d::Union(D,Type{D}),x::Real) = isinteger(x) && minimum(d) <= x <= maximum(d)
@compat insupport{D<:ContinuousUnivariateDistribution}(d::Union{D,Type{D}},x::Real) = minimum(d) <= x <= maximum(d)
@compat insupport{D<:DiscreteUnivariateDistribution}(d::Union{D,Type{D}},x::Real) = isinteger(x) && minimum(d) <= x <= maximum(d)

support{D<:ContinuousUnivariateDistribution}(d::Union(D,Type{D})) = RealInterval(minimum(d), maximum(d))
support{D<:DiscreteUnivariateDistribution}(d::Union(D,Type{D})) = round(Int, minimum(d)):round(Int, maximum(d))
@compat support{D<:ContinuousUnivariateDistribution}(d::Union{D,Type{D}}) = RealInterval(minimum(d), maximum(d))
@compat support{D<:DiscreteUnivariateDistribution}(d::Union{D,Type{D}}) = round(Int, minimum(d)):round(Int, maximum(d))

## macros to declare support

macro distr_support(D, lb, ub)
D_has_constantbounds = (isa(ub, Number) || ub == :Inf) &&
(isa(lb, Number) || lb == :(-Inf))

paramdecl = D_has_constantbounds ? :(d::Union($D, Type{$D})) : :(d::$D)
@compat paramdecl = D_has_constantbounds ? :(d::Union{$D, Type{$D}}) : :(d::$D)

# overall
esc(quote
Expand Down
2 changes: 1 addition & 1 deletion src/utils.jl
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,7 @@ end

isprobvec(p::Vector{Float64}) = allnonneg(p) && isapprox(sum(p), 1.0)

function pnormalize!{T<:FloatingPoint}(v::AbstractVector{T})
function pnormalize!{T<:AbstractFloat}(v::AbstractVector{T})
s = 0.
n = length(v)
for i = 1:n
Expand Down

0 comments on commit 3bf11d1

Please sign in to comment.