forked from JuliaStats/Distributions.jl
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
reimplement Chi distribution using direct parameters
- Loading branch information
Showing
2 changed files
with
35 additions
and
32 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,69 +1,71 @@ | ||
immutable Chi <: ContinuousUnivariateDistribution | ||
chisqd::Chisq | ||
ν::Float64 | ||
|
||
Chi(df::Real) = new(Chisq(df)) | ||
function Chi(ν::Real) | ||
ν > zero(ν) || throw(ArgumentError("Chi: ν must be positive.")) | ||
@compat new(Float64(ν)) | ||
end | ||
end | ||
|
||
@distr_support Chi 0.0 Inf | ||
|
||
|
||
#### Parameters | ||
|
||
dof(d::Chi) = dof(d.chisqd) | ||
params(d::Chi) = (dof(d),) | ||
dof(d::Chi) = d.ν | ||
params(d::Chi) = (d.ν,) | ||
|
||
|
||
#### Statistics | ||
|
||
mean(d::Chi) = (k = dof(d); sqrt2 * gamma((k + 1.0) / 2.0) / gamma(k / 2.0)) | ||
mean(d::Chi) = (h = d.ν * 0.5; sqrt2 * gamma(h + 0.5) / gamma(h)) | ||
|
||
var(d::Chi) = dof(d) - mean(d)^2 | ||
var(d::Chi) = d.ν - mean(d)^2 | ||
_chi_skewness(μ::Float64, σ::Float64) = (σ2 = σ^2; σ3 = σ2 * σ; (μ / σ3) * (1.0 - 2.0 * σ2)) | ||
|
||
function skewness(d::Chi) | ||
μ, σ = mean(d), std(d) | ||
(μ / σ^3) * (1.0 - 2.0 * σ^2) | ||
μ = mean(d) | ||
σ = sqrt(d.ν - μ^2) | ||
_chi_skewness(μ, σ) | ||
end | ||
|
||
function kurtosis(d::Chi) | ||
μ, σ, γ = mean(d), std(d), skewness(d) | ||
μ = mean(d) | ||
σ = sqrt(d.ν - μ^2) | ||
γ = _chi_skewness(μ, σ) | ||
(2.0 / σ^2) * (1 - μ * σ * γ - σ^2) | ||
end | ||
|
||
function entropy(d::Chi) | ||
k = dof(d) | ||
lgamma(k / 2.0) - log(sqrt(2.0)) - | ||
((k - 1.0) / 2.0) * digamma(k / 2.0) + k / 2.0 | ||
end | ||
entropy(d::Chi) = (ν = d.ν; | ||
lgamma(ν / 2.0) - 0.5 * logtwo - ((ν - 1.0) / 2.0) * digamma(ν / 2.0) + ν / 2.0) | ||
|
||
function mode(d::Chi) | ||
k = dof(d) | ||
k >= 1.0 || error("Chi distribution has no mode when df < 1") | ||
sqrt(k - 1.0) | ||
d.ν >= 1.0 || error("Chi distribution has no mode when ν < 1") | ||
sqrt(d.ν - 1.0) | ||
end | ||
|
||
|
||
#### Evaluation | ||
|
||
pdf(d::Chi, x::Float64) = exp(logpdf(d, x)) | ||
|
||
function logpdf(d::Chi, x::Float64) | ||
k = dof(d) | ||
(1.0 - 0.5 * k) * logtwo + (k - 1.0) * log(x) - 0.5 * x^2 - lgamma(0.5 * k) | ||
end | ||
logpdf(d::Chi, x::Float64) = (ν = d.ν; | ||
(1.0 - 0.5 * ν) * logtwo + (ν - 1.0) * log(x) - 0.5 * x^2 - lgamma(0.5 * ν) | ||
) | ||
|
||
gradlogpdf(d::Chi, x::Float64) = x >= 0.0 ? (dof(d) - 1.0) / x - x : 0.0 | ||
gradlogpdf(d::Chi, x::Float64) = x >= 0.0 ? (d.μ - 1.0) / x - x : 0.0 | ||
|
||
cdf(d::Chi, x::Float64) = cdf(d.chisqd, x^2) | ||
ccdf(d::Chi, x::Float64) = ccdf(d.chisqd, x^2) | ||
logcdf(d::Chi, x::Float64) = logcdf(d.chisqd, x^2) | ||
logccdf(d::Chi, x::Float64) = logccdf(d.chisqd, x^2) | ||
cdf(d::Chi, x::Float64) = chisqcdf(d.ν, x^2) | ||
ccdf(d::Chi, x::Float64) = chisqccdf(d.ν, x^2) | ||
logcdf(d::Chi, x::Float64) = chisqlogcdf(d.ν, x^2) | ||
logccdf(d::Chi, x::Float64) = chisqlogccdf(d.ν, x^2) | ||
|
||
quantile(d::Chi, p::Float64) = sqrt(quantile(d.chisqd, p)) | ||
cquantile(d::Chi, p::Float64) = sqrt(cquantile(d.chisqd, p)) | ||
invlogcdf(d::Chi, p::Float64) = sqrt(invlogcdf(d.chisqd, p)) | ||
invlogccdf(d::Chi, p::Float64) = sqrt(invlogccdf(d.chisqd, p)) | ||
quantile(d::Chi, p::Float64) = sqrt(chisqinvcdf(d.ν, p)) | ||
cquantile(d::Chi, p::Float64) = sqrt(chisqinvccdf(d.ν, p)) | ||
invlogcdf(d::Chi, p::Float64) = sqrt(chisqinvlogcdf(d.ν, p)) | ||
invlogccdf(d::Chi, p::Float64) = sqrt(chisqinvlogccdf(d.ν, p)) | ||
|
||
|
||
#### Sampling | ||
|
||
rand(d::Chi) = sqrt(rand(d.chisqd)) | ||
rand(d::Chi) = sqrt(_chisq_rand(d.ν)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters