In this project, we will understand step by step how to take a trained Scikit-Learn model and deploy it to the Cloud using Watson Machine Learning. This model can then be used for a whole bunch of applications and can even be used in different languages like Javascript, Scala, Java and Go.
In this project weβll learn how to:
- Save the model to Watson Machine Learning
- Creating online deployments with Python
- Scoring your model using the Python API
In this project, we will mainly focus on model deployment.
For more details on Machine Learning Model that we used for this project are here
IBM Watson Machine Learning is a full-service IBM Cloud offering that makes it easy for developers and data scientists to work together to integrate predictive capabilities with their applications.
!pip install ibm_watson_machine_learning
from ibm_watson_machine_learning import APIClient
import json
import numpy as np
- go to
cloud.ibm.com
and login - go to
catelog
- search for
machine learning
- select
location
andlite
plan - Access in Watson studio
- go to
deployments
and selectnew deployment space
name
the deployment space and select themachine learning service
that you've created in previous steps.
You will be able to see your space in deployments
from ibm_watson_machine_learning import APIClient
wml_credentials = {
"url":"https://us-south.ml.cloud.ibm.com",
"apikey":"<your api key>"
}
client = APIClient(wml_credentials)
- go to
ibm cloud
- select
manage
->Access(IAM)
->API keys
# create a new deployment space in services and software
space_uid = guid_from_space_name(client, "DeploymentSpace")
print("space_uid : ", space_uid)
Other way to get the space ID:
- go to
deployments
->manage
client.set.default_space(space_uid)
client.software_specifications.list()
----------------------------- ------------------------------------ ----
NAME ASSET_ID TYPE
default_py3.6 0062b8c9-8b7d-44a0-a9b9-46c416adcbd9 base
pytorch-onnx_1.3-py3.7-edt 069ea134-3346-5748-b513-49120e15d288 base
scikit-learn_0.20-py3.6 09c5a1d0-9c1e-4473-a344-eb7b665ff687 base
spark-mllib_3.0-scala_2.12 09f4cff0-90a7-5899-b9ed-1ef348aebdee base
ai-function_0.1-py3.6 0cdb0f1e-5376-4f4d-92dd-da3b69aa9bda base
shiny-r3.6 0e6e79df-875e-4f24-8ae9-62dcc2148306 base
tensorflow_2.4-py3.7-horovod 1092590a-307d-563d-9b62-4eb7d64b3f22 base
pytorch_1.1-py3.6 10ac12d6-6b30-4ccd-8392-3e922c096a92 base
tensorflow_1.15-py3.6-ddl 111e41b3-de2d-5422-a4d6-bf776828c4b7 base
scikit-learn_0.22-py3.6 154010fa-5b3b-4ac1-82af-4d5ee5abbc85 base
default_r3.6 1b70aec3-ab34-4b87-8aa0-a4a3c8296a36 base
pytorch-onnx_1.3-py3.6 1bc6029a-cc97-56da-b8e0-39c3880dbbe7 base
tensorflow_2.1-py3.6 1eb25b84-d6ed-5dde-b6a5-3fbdf1665666 base
tensorflow_2.4-py3.8-horovod 217c16f6-178f-56bf-824a-b19f20564c49 base
do_py3.8 295addb5-9ef9-547e-9bf4-92ae3563e720 base
autoai-ts_3.8-py3.8 2aa0c932-798f-5ae9-abd6-15e0c2402fb5 base
tensorflow_1.15-py3.6 2b73a275-7cbf-420b-a912-eae7f436e0bc base
pytorch_1.2-py3.6 2c8ef57d-2687-4b7d-acce-01f94976dac1 base
spark-mllib_2.3 2e51f700-bca0-4b0d-88dc-5c6791338875 base
pytorch-onnx_1.1-py3.6-edt 32983cea-3f32-4400-8965-dde874a8d67e base
spark-mllib_3.0-py37 36507ebe-8770-55ba-ab2a-eafe787600e9 base
spark-mllib_2.4 390d21f8-e58b-4fac-9c55-d7ceda621326 base
xgboost_0.82-py3.6 39e31acd-5f30-41dc-ae44-60233c80306e base
pytorch-onnx_1.2-py3.6-edt 40589d0e-7019-4e28-8daa-fb03b6f4fe12 base
autoai-obm_3.0 42b92e18-d9ab-567f-988a-4240ba1ed5f7 base
spark-mllib_2.4-r_3.6 49403dff-92e9-4c87-a3d7-a42d0021c095 base
xgboost_0.90-py3.6 4ff8d6c2-1343-4c18-85e1-689c965304d3 base
pytorch-onnx_1.1-py3.6 50f95b2a-bc16-43bb-bc94-b0bed208c60b base
autoai-ts_3.9-py3.8 52c57136-80fa-572e-8728-a5e7cbb42cde base
spark-mllib_2.4-scala_2.11 55a70f99-7320-4be5-9fb9-9edb5a443af5 base
spark-mllib_3.0 5c1b0ca2-4977-5c2e-9439-ffd44ea8ffe9 base
autoai-obm_2.0 5c2e37fa-80b8-5e77-840f-d912469614ee base
spss-modeler_18.1 5c3cad7e-507f-4b2a-a9a3-ab53a21dee8b base
cuda-py3.8 5d3232bf-c86b-5df4-a2cd-7bb870a1cd4e base
autoai-kb_3.1-py3.7 632d4b22-10aa-5180-88f0-f52dfb6444d7 base
pytorch-onnx_1.7-py3.8 634d3cdc-b562-5bf9-a2d4-ea90a478456b base
spark-mllib_2.3-r_3.6 6586b9e3-ccd6-4f92-900f-0f8cb2bd6f0c base
tensorflow_2.4-py3.7 65e171d7-72d1-55d9-8ebb-f813d620c9bb base
spss-modeler_18.2 687eddc9-028a-4117-b9dd-e57b36f1efa5 base
pytorch-onnx_1.2-py3.6 692a6a4d-2c4d-45ff-a1ed-b167ee55469a base
do_12.9 75a3a4b0-6aa0-41b3-a618-48b1f56332a6 base
spark-mllib_2.3-scala_2.11 7963efe5-bbec-417e-92cf-0574e21b4e8d base
spark-mllib_2.4-py37 7abc992b-b685-532b-a122-a396a3cdbaab base
caffe_1.0-py3.6 7bb3dbe2-da6e-4145-918d-b6d84aa93b6b base
pytorch-onnx_1.7-py3.7 812c6631-42b7-5613-982b-02098e6c909c base
cuda-py3.6 82c79ece-4d12-40e6-8787-a7b9e0f62770 base
tensorflow_1.15-py3.6-horovod 8964680e-d5e4-5bb8-919b-8342c6c0dfd8 base
hybrid_0.1 8c1a58c6-62b5-4dc4-987a-df751c2756b6 base
pytorch-onnx_1.3-py3.7 8d5d8a87-a912-54cf-81ec-3914adaa988d base
caffe-ibm_1.0-py3.6 8d863266-7927-4d1e-97d7-56a7f4c0a19b base
----------------------------- ------------------------------------ ----
Note: Only first 50 records were displayed. To display more use 'limit' parameter.
software_spec_uid = client.software_specifications.get_uid_by_name("default_py3.8")
model_details = client.repository.store_model(model=bestAdaModFitted2, meta_props={
client.repository.ModelMetaNames.NAME: "Customer churn prediction",
client.repository.ModelMetaNames.TYPE: "scikit-learn_0.23",
client.repository.ModelMetaNames.SOFTWARE_SPEC_UID: software_spec_uid})
model_id = client.repository.get_model_uid(model_details)
The model can be deployed in 2 ways:
- go to
deployments
->spaces
-> select you space name -> select thedeploy
option infront of model
deployment_props = {
client.deployments.ConfigurationMetaNames.NAME:"Sklearn Deployment",
client.deployments.ConfigurationMetaNames.ONLINE: {}
}
# Deploy
deployment = client.deployments.create(
artifact_uid=model_id,
meta_props=deployment_props
)
# Output result
deployment
For prediction also we can use 2 ways:
payload = {"input_data":
[
{"fields":X_test[0:1].columns.to_numpy().tolist(), "values":X_test[0:1].to_numpy().tolist()}
]
}
deployment_uid = client.deployments.get_uid(deployment)
result = client.deployments.score(deployment_uid, payload)
result
{'predictions': [{'fields': ['prediction', 'probability'],
'values': [[0, [0.5306418238572117, 0.46935817614278824]]]}]}
pred_values = np.squeeze(result['predictions'][0]['values']);
pred_values[0]
result is : 0
Which means customer won't churn.
Check the Notebook for implementation.
After deploying the model IBM watson studio generates an API reference URL for accessing the deployed model.
API_KEY = ""
token_response = requests.post('' data={"apikey": API_KEY, "grant_type": 'urn:ibm:params:oauth:grant-type:apikey'})
mltoken = token_response.json()["access_token"]
header = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + mltoken}
payload_scoring = {"input_data": [{'fields': ['gender',
'SeniorCitizen',
'Partner',
'Dependents',
'tenure',
'PhoneService',
'MultipleLines',
'InternetService',
'OnlineSecurity',
'OnlineBackup',
'DeviceProtection',
'TechSupport',
'StreamingTV',
'StreamingMovies',
'Contract',
'PaperlessBilling',
'PaymentMethod',
'MonthlyCharges',
'TotalCharges'],
"values": [[0.0,
0.0,
0.0,
0.0,
-0.629446027814582,
1.0,
2.0,
2.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
0.0,
0.0,
3.0,
-1.322051671307397,
-0.8000098038460207]]}]}
response_scoring = requests.post('<url>', json=payload_scoring, headers={'Authorization': 'Bearer ' + mltoken})
print("Scoring response")
print(response_scoring.json())
Scoring response
{'predictions': [{'fields': ['prediction', 'probability'], 'values': [[0, [0.5306418238572117, 0.46935817614278824]]]}]}
Customer will likely to continue with her subscription (won't churn)
MIT License
Model Deployment using IBM Watson Studio
IBM Cloud
Watson Machine Learning
Watson Studio
Example deploying with Cloud Pak for Data
If you have any feedback, please reach out at [email protected]
I am an AI Enthusiast and Data science & ML practitioner