Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

draft ggplot based sankey plot #367

Merged
merged 12 commits into from
Jan 8, 2025
4 changes: 2 additions & 2 deletions DESCRIPTION
Original file line number Diff line number Diff line change
Expand Up @@ -40,9 +40,10 @@ Imports:
cli (>= 3.2.0),
config,
dplyr,
ggalluvial,
ggplot2,
ggrepel,
glue,
networkD3,
r2dii.analysis (>= 0.3.0),
r2dii.data (>= 0.5.0),
r2dii.match (>= 0.3.0),
Expand All @@ -52,7 +53,6 @@ Imports:
rlang,
scales,
tidyr,
webshot,
yaml,
yesno
Depends:
Expand Down
55 changes: 16 additions & 39 deletions R/plot_aggregate_loanbooks.R
Original file line number Diff line number Diff line change
Expand Up @@ -171,50 +171,27 @@ plot_aggregate_loanbooks <- function(config) {
na = ""
)

plot_sankey(
data_sankey_sector,
group_var = by_group,
save_png_to = path.expand(analysis_aggregated_dir),
png_name = glue::glue("plot_{output_file_sankey_sector}.png"),
nodes_order_from_data = TRUE
p_sankey <- plot_sankey(
data = data_sankey_sector,
y_axis = "loan_size_outstanding",
initial_node = by_group,
middle_node = "sector",
end_node = "is_aligned",
stratum = "is_aligned"
)
} else {
cli::cli_warn("Sankey plot (by sector) cannot be generated. Skipping!")
}

if (!is.null(company_aggregated_alignment_net)) {
data_sankey_company_sector <- prep_sankey(
company_aggregated_alignment_net,
region = "global",
year = start_year + time_frame_select,
group_var = by_group,
middle_node = "name_abcd",
middle_node2 = "sector"
ggplot2::ggsave(
plot = p_sankey,
filename = glue::glue("plot_{output_file_sankey_sector}.png"),
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

where does output_file_sankey_sector come from in this updated script?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

lines 159-163

path = analysis_aggregated_dir,
width = 8,
height = 5,
dpi = 300,
units = "in",
)

if (is.null(by_group)) {
output_file_sankey_company_sector <- "sankey_company_sector"
} else {
output_file_sankey_company_sector <- glue::glue("sankey_company_sector_{by_group}")
}

data_sankey_company_sector %>%
readr::write_csv(
file = file.path(
analysis_aggregated_dir,
glue::glue("data_{output_file_sankey_company_sector}.csv")
),
na = ""
)

plot_sankey(
data_sankey_company_sector,
group_var = by_group,
save_png_to = path.expand(analysis_aggregated_dir),
png_name = glue::glue("plot_{output_file_sankey_company_sector}.png")
)
} else {
cli::cli_warn("Sankey plot (by sector and company) cannot be generated. Skipping!")
cli::cli_warn("Sankey plot (by sector) cannot be generated. Skipping!")
}

### scatter plot alignment by exposure and sector comparison----
Expand Down
211 changes: 52 additions & 159 deletions R/plot_sankey.R
Original file line number Diff line number Diff line change
@@ -1,176 +1,69 @@
#' Make a sankey plot
#'
#' @param data data.frame. Should have the same format as output of
#' `prep_sankey()` and contain columns: `"middle_node"`, optionally
#' `"middle_node2"`, `"is_aligned"`, `"loan_size_outstanding"`, and any column
#' implied by `group_var`.
#' @param group_var Character. Vector of length 1. Variable to group by.
#' @param capitalise_node_labels Logical. Flag indicating if node labels should
#' be converted into better looking capitalised form.
#' @param save_png_to Character. Path where the output in png format should be
#' saved
#' @param png_name Character. File name of the output.
#' @param nodes_order_from_data Logical. Flag indicating if nodes order should
#' be determined by an algorithm (in case of big datasets often results in a
#' better looking plot) or should they be ordered based on data.
#' `prep_sankey()` and contain columns: `"y_axis"`, `"initial_node"`,
#' `"middle_node"`, `"end_node"`, `"stratum"`, `"currency"`.
#' @param y_axis Character. Vector of length 1. Variable to determine the
#' vertical size of the ribbons, e.g. `"loan_size_outstanding"`.
#' @param initial_node Character. Vector of length 1. Variable to determine the
#' initial node of the sankey chart. Usually, this will be the groups by which
#' the loan books are aggregated.
#' @param middle_node Character. Vector of length 1. Variable to determine the
#' middle node of the sankey chart. Usually, this will be the PACTA sectors.
#' @param end_node Character. Vector of length 1. Variable to determine the
#' end node of the sankey chart. Usually, this will be a binary indicator of
#' alignment.
#' @param stratum Character. Vector of length 1. Variable to determine the
#' grouping and fill of the ribbons of the sankey chart. Usually, this will be
#' a binary indicator of alignment.
#'
#' @return NULL
#'
#' @noRd

plot_sankey <- function(data,
group_var,
capitalise_node_labels = TRUE,
save_png_to = NULL,
png_name = "sankey.png",
nodes_order_from_data = FALSE) {
if (!is.null(group_var)) {
if (!inherits(group_var, "character")) {
cli::cli_abort("{.arg group_var} must be of class {.cls character}")
}
if (!length(group_var) == 1) {
cli::cli_abort("{.arg group_var} must be of length 1")
}
} else {
data <- data %>%
dplyr::mutate(aggregate_loan_book = "Aggregate loan book")
group_var <- "aggregate_loan_book"
y_axis = "loan_size_outstanding",
initial_node,
middle_node = "sector",
end_node = "is_aligned",
stratum = "is_aligned") {
# since the initial node is the loan book aggregation, NULL grouping corresponds to the aggregate loan book
if (is.null(initial_node)) {
initial_node <- "aggregate_loan_book"
}

check_plot_sankey(
data = data,
group_var = group_var,
capitalise_node_labels = capitalise_node_labels
)

if (capitalise_node_labels) {
data_links <- data %>%
dplyr::mutate(
group_var = r2dii.plot::to_title(!!rlang::sym(group_var)),
middle_node = r2dii.plot::to_title(.data[["middle_node"]])
)
if ("middle_node2" %in% names(data_links)) {
data_links <- data_links %>%
dplyr::mutate(
middle_node2 = r2dii.plot::to_title(.data[["middle_node2"]])
)
}
} else {
data_links <- data
}
currency <- unique(data[["currency"]])

links_1 <- data_links %>%
dplyr::select(
source = .env[["group_var"]],
target = "middle_node",
value = "loan_size_outstanding",
group = "is_aligned"
p <- ggplot2::ggplot(
data = data,
ggplot2::aes(
axis1 = .data[["initial_node"]],
axis2 = .data[["middle_node"]],
axis3 = .data[["end_node"]],
y = .data[["loan_size_outstanding"]]
)

if ("middle_node2" %in% names(data_links)) {
links_2 <- data_links %>%
dplyr::select(
.env[["group_var"]],
source = "middle_node",
target = "middle_node2",
value = "loan_size_outstanding",
group = "is_aligned"
)

links_3 <- data_links %>%
dplyr::select(
.env[["group_var"]],
source = "middle_node2",
target = "is_aligned",
value = "loan_size_outstanding",
group = "is_aligned"
)

links <- dplyr::bind_rows(links_1, links_2, links_3)
} else {
links_2 <- data_links %>%
dplyr::select(
.env[["group_var"]],
source = "middle_node",
target = "is_aligned",
value = "loan_size_outstanding",
group = "is_aligned"
)

links <- dplyr::bind_rows(links_1, links_2)
}

links <- links %>%
dplyr::group_by(.data[["source"]], .data[["target"]], .data[["group"]]) %>%
dplyr::summarise(value = sum(.data[["value"]], na.rm = TRUE)) %>%
dplyr::ungroup() %>%
dplyr::arrange(.data[["source"]], .data[["group"]]) %>%
as.data.frame()

nodes <- data.frame(
name = unique(c(as.character(links$source), as.character(links$target)))
) %>%
dplyr::mutate(
group = dplyr::case_when(
.data[["name"]] %in% c("Aligned", "Not aligned", "Unknown") ~ .data[["name"]],
TRUE ~ "other"
)
) +
ggplot2::scale_y_continuous(labels = scales::comma) +
ggplot2::ylab(glue::glue("Financial exposure (in {currency})")) +
ggalluvial::geom_alluvium(ggplot2::aes(fill = .data[["is_aligned"]])) +
ggplot2::scale_fill_manual(
values = c("Aligned" = "green4", "Not aligned" = "red3", "Unknown" = "gray30")
) +
ggalluvial::geom_stratum(fill = "gray90", color = "gray50") +
ggrepel::geom_text_repel(
ggplot2::aes(label = ggplot2::after_stat(stratum)),
stat = ggalluvial::StatStratum, size = 4, direction = "y", nudge_x = .3
) +
r2dii.plot::theme_2dii() +
ggplot2::theme(
axis.title.x = ggplot2::element_blank(),
axis.text.x = ggplot2::element_blank(),
axis.ticks.x = ggplot2::element_blank()
) +
ggplot2::ggtitle(
"Sankey chart of counterparty alignment by financial exposure",
paste0("stratified by counterpaty alignment and ", middle_node)
)

my_color <- 'd3.scaleOrdinal() .domain(["Not aligned", "Aligned", "Unknown", "other"]) .range(["#e10000","#3d8c40", "#808080", "#808080"])'

links$IDsource <- match(links$source, nodes$name) - 1
links$IDtarget <- match(links$target, nodes$name) - 1

if (nodes_order_from_data) {
n_iter <- 0
} else {
n_iter <- 32 # sankeyNetwork() default
}

p <- networkD3::sankeyNetwork(
Links = links,
Nodes = nodes,
Source = "IDsource",
Target = "IDtarget",
Value = "value",
NodeID = "name",
colourScale = my_color,
LinkGroup = "group",
NodeGroup = "group",
fontSize = 14,
iterations = n_iter
)

if (!is.null(save_png_to)) {
# you save it as an html
temp_html <- tempfile(fileext = ".html")
networkD3::saveNetwork(p, temp_html)

if (webshot::is_phantomjs_installed()) {
file_name <- file.path(save_png_to, png_name)
# you convert it as png
webshot::webshot(temp_html, path.expand(file_name), vwidth = 1000, vheight = 900)
} else {
cli::cli_warn(
"In order to save the plot as PNG, you need to have {.pkg phantomjs}
installed. Please run {.run webshot::install_phantomjs()} if you don't
and try running the function again."
)
}
}
p
}

check_plot_sankey <- function(data,
group_var,
capitalise_node_labels) {
crucial_names <- c(group_var, "middle_node", "is_aligned", "loan_size_outstanding")
assert_no_missing_names(data, crucial_names)
if (!is.logical(capitalise_node_labels)) {
cli::cli_abort(c(
x = "`capitalise_node_labels` must have a {.cls logical} value.",
i = "capitalise_node_labels` contains the value{?s}: {.val {capitalise_node_labels}}."
))
}
}
Loading
Loading