Skip to content

RaghavMangla/TailorCV-GenAI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🤖 GenAI Toolkit

A comprehensive collection of Generative AI implementations using LangChain, Groq, and Google Gemini Pro

Python LangChain Groq Streamlit

🎯 Project Overview

This repository showcases various implementations of Generative AI applications using modern frameworks and models. From job application generators to multi-RAG agents, this toolkit demonstrates the practical applications of AI in solving real-world problems.

🎥 Demo Video Watch the Demo

Application Form Offcampus - Content Generator Demo

✨ Key Features

📝 Off-Campus Application Generator

  • Generates tailored skill sets based on job descriptions
  • Creates custom cover letters using job descriptions and resumes
  • Built with LangChain and Groq API
  • Frontend: client.py, Backend: api.py

🔍 Multi-RAG Agent

  • Implements multiple retrieval tools:
    • 📚 Wikipedia Retriever
    • 📖 Arxiv Retriever
    • 🌐 Custom LangChain Documentation Retriever
  • Powered by Google's Gemini Pro
  • Uses Google Generative AI embeddings
  • FAISS vector database integration

📊 Advanced RAG Implementation

  • Comprehensive RAG pipeline demonstration
  • Multiple loader implementations:
    • Text-based loader
    • Web-based loader
    • PDF loader
  • Vector database integration (FAISS)
  • Custom chat prompt templates

💬 Groq Chatbot

  • Streamlit-based interactive interface
  • Web-based document loader
  • LangChain documentation integration

🛠️ Setup Instructions

  1. Create and activate a Conda environment
conda create -n chat_assist python=3.10 anaconda
conda activate chat_assist
  1. Install dependencies
pip install -r requirements.txt
  1. Configure Environment Variables
LANGCHAIN_API_KEY=xxx
LANGCHAIN_PROJECT=ProjectName
GOOGLE_API_KEY=xxx
GROQ_API_KEY=xxx

📁 Project Structure

.
├── api/
│   ├── api.py          # Backend implementation
│   └── client.py       # Frontend implementation
├── agents.py           # Multi-RAG agent implementation
├── rag/
│   └── advanced_rag.ipynb  # RAG pipeline demonstration
├── groq/               # Groq-specific implementations
└── requirements.txt

🔧 Technologies Used

  • LangChain Framework
  • Groq API
  • Google Gemini Pro
  • FAISS and ChromaDB Vector Database
  • Streamlit
  • Google Generative AI
  • Wikipedia Wrapper by Langchain
  • Arxiv API Wrapper by Langchain

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published