Skip to content

Commit

Permalink
Browse files Browse the repository at this point in the history
  • Loading branch information
drake-jenkins-bot committed Jan 17, 2025
1 parent bf8856f commit 4d3d5b5
Show file tree
Hide file tree
Showing 424 changed files with 60,412 additions and 53,348 deletions.
716 changes: 358 additions & 358 deletions doxygen_cxx/all_8h__dep__incl.svg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
716 changes: 358 additions & 358 deletions doxygen_cxx/all_8h__dep__incl_org.svg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
21 changes: 11 additions & 10 deletions doxygen_cxx/annotated.html
Original file line number Diff line number Diff line change
Expand Up @@ -315,16 +315,17 @@
<tr id="row_0_4_1_15_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classdrake_1_1geometry_1_1optimization_1_1_hyperellipsoid.html" target="_self">Hyperellipsoid</a></td><td class="desc">Implements an ellipsoidal convex set represented by the quadratic form <code>{x | (x-center)ᵀAᵀA(x-center) ≤ 1}</code> </td></tr>
<tr id="row_0_4_1_16_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classdrake_1_1geometry_1_1optimization_1_1_hyperrectangle.html" target="_self">Hyperrectangle</a></td><td class="desc">Axis-aligned hyperrectangle in Rᵈ defined by its lower bounds and upper bounds as {x| lb ≤ x ≤ ub} </td></tr>
<tr id="row_0_4_1_17_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classdrake_1_1geometry_1_1optimization_1_1_implicit_graph_of_convex_sets.html" target="_self">ImplicitGraphOfConvexSets</a></td><td class="desc">A base class to define the interface to an implicit graph of convex sets </td></tr>
<tr id="row_0_4_1_18_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classdrake_1_1geometry_1_1optimization_1_1_intersection.html" target="_self">Intersection</a></td><td class="desc">A convex set that represents the intersection of multiple sets: S = X₁ ∩ X₂ ∩ .. </td></tr>
<tr id="row_0_4_1_19_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structdrake_1_1geometry_1_1optimization_1_1_iris_options.html" target="_self">IrisOptions</a></td><td class="desc">Configuration options for the IRIS algorithm </td></tr>
<tr id="row_0_4_1_20_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classdrake_1_1geometry_1_1optimization_1_1_minkowski_sum.html" target="_self">MinkowskiSum</a></td><td class="desc">A convex set that represents the Minkowski sum of multiple sets: S = X₁ ⨁ X₂ ⨁ .. </td></tr>
<tr id="row_0_4_1_21_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structdrake_1_1geometry_1_1optimization_1_1_plane_separates_geometries.html" target="_self">PlaneSeparatesGeometries</a></td><td class="desc">Contains the information to enforce a pair of geometries are separated by a plane </td></tr>
<tr id="row_0_4_1_22_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classdrake_1_1geometry_1_1optimization_1_1_point.html" target="_self">Point</a></td><td class="desc">A convex set that contains exactly one element </td></tr>
<tr id="row_0_4_1_23_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structdrake_1_1geometry_1_1optimization_1_1_sampled_volume.html" target="_self">SampledVolume</a></td><td class="desc">The result of a volume calculation from CalcVolumeViaSampling() </td></tr>
<tr id="row_0_4_1_24_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structdrake_1_1geometry_1_1optimization_1_1_separation_certificate_program_base.html" target="_self">SeparationCertificateProgramBase</a></td><td class="desc"></td></tr>
<tr id="row_0_4_1_25_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structdrake_1_1geometry_1_1optimization_1_1_separation_certificate_result_base.html" target="_self">SeparationCertificateResultBase</a></td><td class="desc">We certify that a pair of geometries is collision free by finding the separating plane over a range of configuration </td></tr>
<tr id="row_0_4_1_26_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classdrake_1_1geometry_1_1optimization_1_1_spectrahedron.html" target="_self">Spectrahedron</a></td><td class="desc">Implements a spectrahedron (the feasible set of a semidefinite program) </td></tr>
<tr id="row_0_4_1_27_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classdrake_1_1geometry_1_1optimization_1_1_v_polytope.html" target="_self">VPolytope</a></td><td class="desc">A polytope described using the vertex representation </td></tr>
<tr id="row_0_4_1_18_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classdrake_1_1geometry_1_1optimization_1_1_implicit_graph_of_convex_sets_from_explicit.html" target="_self">ImplicitGraphOfConvexSetsFromExplicit</a></td><td class="desc">Provides an implicit GCS interface given an explicit GCS </td></tr>
<tr id="row_0_4_1_19_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classdrake_1_1geometry_1_1optimization_1_1_intersection.html" target="_self">Intersection</a></td><td class="desc">A convex set that represents the intersection of multiple sets: S = X₁ ∩ X₂ ∩ .. </td></tr>
<tr id="row_0_4_1_20_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structdrake_1_1geometry_1_1optimization_1_1_iris_options.html" target="_self">IrisOptions</a></td><td class="desc">Configuration options for the IRIS algorithm </td></tr>
<tr id="row_0_4_1_21_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classdrake_1_1geometry_1_1optimization_1_1_minkowski_sum.html" target="_self">MinkowskiSum</a></td><td class="desc">A convex set that represents the Minkowski sum of multiple sets: S = X₁ ⨁ X₂ ⨁ .. </td></tr>
<tr id="row_0_4_1_22_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structdrake_1_1geometry_1_1optimization_1_1_plane_separates_geometries.html" target="_self">PlaneSeparatesGeometries</a></td><td class="desc">Contains the information to enforce a pair of geometries are separated by a plane </td></tr>
<tr id="row_0_4_1_23_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classdrake_1_1geometry_1_1optimization_1_1_point.html" target="_self">Point</a></td><td class="desc">A convex set that contains exactly one element </td></tr>
<tr id="row_0_4_1_24_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structdrake_1_1geometry_1_1optimization_1_1_sampled_volume.html" target="_self">SampledVolume</a></td><td class="desc">The result of a volume calculation from CalcVolumeViaSampling() </td></tr>
<tr id="row_0_4_1_25_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structdrake_1_1geometry_1_1optimization_1_1_separation_certificate_program_base.html" target="_self">SeparationCertificateProgramBase</a></td><td class="desc"></td></tr>
<tr id="row_0_4_1_26_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structdrake_1_1geometry_1_1optimization_1_1_separation_certificate_result_base.html" target="_self">SeparationCertificateResultBase</a></td><td class="desc">We certify that a pair of geometries is collision free by finding the separating plane over a range of configuration </td></tr>
<tr id="row_0_4_1_27_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classdrake_1_1geometry_1_1optimization_1_1_spectrahedron.html" target="_self">Spectrahedron</a></td><td class="desc">Implements a spectrahedron (the feasible set of a semidefinite program) </td></tr>
<tr id="row_0_4_1_28_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classdrake_1_1geometry_1_1optimization_1_1_v_polytope.html" target="_self">VPolytope</a></td><td class="desc">A polytope described using the vertex representation </td></tr>
<tr id="row_0_4_2_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span id="arr_0_4_2_" class="arrow" onclick="toggleFolder('0_4_2_')">&#9658;</span><span class="icona"><span class="icon">N</span></span><a class="el" href="namespacedrake_1_1geometry_1_1render.html" target="_self">render</a></td><td class="desc"></td></tr>
<tr id="row_0_4_2_0_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classdrake_1_1geometry_1_1render_1_1_clipping_range.html" target="_self">ClippingRange</a></td><td class="desc">Defines the near and far clipping planes for frustum-based (OpenGL) <a class="el" href="classdrake_1_1geometry_1_1render_1_1_render_engine.html" title="The engine for performing rasterization operations on geometry.">RenderEngine</a> cameras </td></tr>
<tr id="row_0_4_2_1_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classdrake_1_1geometry_1_1render_1_1_color_render_camera.html" target="_self">ColorRenderCamera</a></td><td class="desc">Collection of camera properties for cameras to be used with color/label images </td></tr>
Expand Down
Loading

0 comments on commit 4d3d5b5

Please sign in to comment.