Skip to content

[CVPR 2024] Generalizable Tumor Synthesis - Realistic Synthetic Tumors in Liver, Pancreas, and Kidney

License

Notifications You must be signed in to change notification settings

RuanYizhe-77/DiffTumor

 
 

Repository files navigation

Generalizable Tumor Synthesis

We have shown that many types of tumors in different abdominal organs look very similar if they are small (less than 2cm) which implies that we can train the AI to detect tumors in the liver or kidney but only training the diffusion model on tumors in the pancreas (Q. Chen et al. CVPR 2024). These studies have been validated both by studies of radiologists (by challenging them to distinguish between a synthetic tumor and a real tumor) and by comprehensive tests of the AI algorithms trained using stimulated data.

Paper

Towards Generalizable Tumor Synthesis
Qi Chen1, Xiaoxi Chen2, Haorui Song3, Zhiwei Xiong1, Alan L. Yuille3, Wei Chen3 and Zongwei Zhou3,*
1 University of Science and Technology of China,
2 Shanghai Jiao Tong University,
3 Johns Hopkins University
CVPR, 2024
paper | code | slides | huggingface

We have documented common questions for the paper in Frequently Asked Questions (FAQ).

We have summarized publications related to tumor synthesis in Awesome Synthetic Tumors Awesome.

We have released videos for Visual Turing Test. Check to see if you could tell which is real tumor and which is synthetic tumor.

0. Installation

git clone https://github.com/MrGiovanni/DiffTumor.git
cd DiffTumor

See installation instructions to create an environment and obtain requirements.

1. Train Autoencoder Model

You can train Autoencoder Model on AbdomenAtlas 1.0 dataset by your own. The release of AbdomenAtlas 1.0 can be found at https://huggingface.co/datasets/AbdomenAtlas/AbdomenAtlas_1.0_Mini.

cd STEP1.AutoencoderModel
datapath=<your-datapath> (e.g., /data/bdomenAtlasMini1.0/)
gpu_num=1
cache_rate=0.05
batch_size=4
dataset_list="AbdomenAtlas1.0Mini"
python train.py dataset.data_root_path=$datapath dataset.dataset_list=$dataset_list dataset.cache_rate=$cache_rate dataset.batch_size=$batch_size model.gpus=$gpu_num

We offer the pre-trained checkpoint of Autoencoder Model, which was trained on AbdomenAtlas 1.1 dataset (see details in SuPreM). This checkpoint can be directly used for STEP2 if you do not want to re-train the Autoencoder Model. Simply download it to STEP2.DiffusionModel/pretrained_models/AutoencoderModel.ckpt

cd STEP2.DiffusionModel/pretrained_models/
wget https://huggingface.co/MrGiovanni/DiffTumor/resolve/main/AutoencoderModel/AutoencoderModel.ckpt

2. Train Diffusion Model

In our study, Diffusion Model focuses on the tumor region generation (simple texture and small shape). Early-stage tumors appear similar in the three abdominal organs, enabling models to effectively learn these characteristics from minimal examples. If you want to train Diffusion Model that synthesize early tumors, you need to first process the data to filter out the early tumors labels. We take the example of training Diffusion Model for early-stage liver tumors.

Download the public dataset MSD-Liver (More datasets can be seen in installation instructions).

wget https://huggingface.co/MrGiovanni/DiffTumor/resolve/main/Task03_Liver.tar.gz
tar -zxvf Task03_Liver.tar.gz

We offer the preprocessed labels for early-stage tumors and mid-/late- stage tumors.

wget https://huggingface.co/MrGiovanni/DiffTumor/resolve/main/preprocessed_labels.tar.gz
tar -zxvf preprocessed_labels.tar.gz
Preprocess details
  1. Download the dataset according to the installation instructions.
  2. Modify data_dir and tumor_save_dir in data_transfer.py.
  3. python -W ignore data_transfer.py
Start training.
cd STEP2.DiffusionModel/
vqgan_ckpt=<pretrained-AutoencoderModel> (e.g., /pretrained_models/AutoencoderModel.ckpt)
fold=0
datapath=<your-datapath> (e.g., /data/10_Decathlon/Task03_Liver/)
tumorlabel=<your-labelpath> (e.g., /data/preprocessed_labels/)
python train.py dataset.name=liver_tumor_train dataset.fold=$fold dataset.data_root_path=$datapath dataset.label_root_path=$tumorlabel dataset.dataset_list=['liver_tumor_data_early_fold'] dataset.uniform_sample=False model.results_folder_postfix="liver_early_tumor_fold'$fold'"  model.vqgan_ckpt=$vqgan_ckpt

We offer the pre-trained checkpoints of Diffusion Model, which were trained for early-stage and mid-/late- stage tumors for liver, pancreas and kidney, respectively. This checkpoint can be directly used for STEP3 if you do not want to re-train the Diffusion Model. Simply download it to STEP3.SegmentationModel/TumorGeneration/model_weight

Checkpoints
Tumor Type Download
liver early link
liver mid&late link
pancreas early link
pancreas mid&late link
kidney early link
kidney mid&late link

3. Train Segmentation Model

Download healthy CT data

from Huggingface

(More details can be seen in the corresponding huggingface repository).

mkdir HealthyCT
cd HealthyCT
huggingface-cli download qicq1c/HealthyCT  --repo-type dataset --local-dir .  --cache-dir ./cache
cat healthy_ct.zip* > HealthyCT.zip
rm -rf healthy_ct.zip* cache
unzip -o -q HealthyCT.zip -d /HealthyCT
from Dropbox
wget https://www.dropbox.com/scl/fi/j8di09jm1s798ofnwlkf6/HealthyCT.tar.gz?rlkey=ujuc82109eceld1vmwwu24z26
mv HealthyCT.tar.gz?rlkey=ujuc82109eceld1vmwwu24z26 HealthyCT.tar.gz
tar -xzvf HealthyCT.tar.gz

Prepare Autoencoder and Diffusion Model. Put the pre-trained weights to STEP3.SegmentationModel/TumorGeneration/model_weight

cd STEP3.SegmentationModel/TumorGeneration/model_weight/
wget https://huggingface.co/MrGiovanni/DiffTumor/resolve/main/AutoencoderModel/AutoencoderModel.ckpt
wget https://huggingface.co/MrGiovanni/DiffTumor/resolve/main/DiffusionModel/liver_early.pt
wget https://huggingface.co/MrGiovanni/DiffTumor/resolve/main/DiffusionModel/liver_noearly.pt
cd ../..

Start training.

cd STEP3.SegmentationModel

healthy_datapath=<your-datapath> (e.g., /data/HealthyCT/)
datapath=<your-datapath> (e.g., /data/10_Decathlon/Task03_Liver/)
cache_rate=1.0
batch_size=12
val_every=50
workers=12
organ=liver
fold=0

# U-Net
backbone=unet
logdir="runs/$organ.fold$fold.$backbone"
datafold_dir=cross_eval/"$organ"_aug_data_fold/
dist=$((RANDOM % 99999 + 10000))
python -W ignore main.py --model_name $backbone --cache_rate $cache_rate --dist-url=tcp://127.0.0.1:$dist --workers $workers --max_epochs 2000 --val_every $val_every --batch_size=$batch_size --save_checkpoint --distributed --noamp --organ_type $organ --organ_model $organ --tumor_type tumor --fold $fold --ddim_ts 50 --logdir=$logdir --healthy_data_root $healthy_datapath --data_root $datapath --datafold_dir $datafold_dir

# nnU-Net
backbone=nnunet
logdir="runs/$organ.fold$fold.$backbone"
datafold_dir=cross_eval/"$organ"_aug_data_fold/
dist=$((RANDOM % 99999 + 10000))
python -W ignore main.py --model_name $backbone --cache_rate $cache_rate --dist-url=tcp://127.0.0.1:$dist --workers $workers --max_epochs 2000 --val_every $val_every --batch_size=$batch_size --save_checkpoint --distributed --noamp --organ_type $organ --organ_model $organ --tumor_type tumor --fold $fold --ddim_ts 50 --logdir=$logdir --healthy_data_root $healthy_datapath --data_root $datapath --datafold_dir $datafold_dir

# Swin-UNETR
backbone=swinunetr
logdir="runs/$organ.fold$fold.$backbone"
datafold_dir=cross_eval/"$organ"_aug_data_fold/
dist=$((RANDOM % 99999 + 10000))
python -W ignore main.py --model_name $backbone --cache_rate $cache_rate --dist-url=tcp://127.0.0.1:$dist --workers $workers --max_epochs 2000 --val_every $val_every --batch_size=$batch_size --save_checkpoint --distributed --noamp --organ_type $organ --organ_model $organ --tumor_type tumor --fold $fold --ddim_ts 50 --logdir=$logdir --healthy_data_root $healthy_datapath --data_root $datapath --datafold_dir $datafold_dir

We offer the pre-trained checkpoints of Segmentation Model (U-Net, nnU-Net and Swin UNETR), which were trained on real and synthetic tumors for liver, pancreas and kidney.

U-Net
Tumor Download
liver link
pancreas link
kidney link
nnU-Net
Tumor Download
liver link
pancreas link
kidney link
Swin UNETR
Tumor Download
liver link
pancreas link
kidney link

4. Evaluation

cd SegmentationModel
datapath=/mnt/ccvl15/zzhou82/PublicAbdominalData/
organ=liver
fold=0
datafold_dir=cross_eval/"$organ"_aug_data_fold/

# U-Net
python -W ignore validation.py --model=unet --data_root $datapath --datafold_dir $datafold_dir --tumor_type tumor --organ_type $organ --fold $fold --log_dir $organ/$organ.fold$fold.unet --save_dir out/$organ/$organ.fold$fold.unet

# nnU-Net
python -W ignore validation.py --model=nnunet --data_root $datapath --datafold_dir $datafold_dir --tumor_type tumor --organ_type $organ --fold $fold --log_dir $organ/$organ.fold$fold.unet --save_dir out/$organ/$organ.fold$fold.unet

# Swin-UNETR
python -W ignore validation.py --model=swinunetr --data_root $datapath --datafold_dir $datafold_dir --tumor_type tumor --organ_type $organ --fold $fold --log_dir $organ/$organ.fold$fold.unet --save_dir out/$organ/$organ.fold$fold.unet

We also provide the singularity container for DiffTumor in HuggingFace 🤗

inputs_data=/path/to/your/CT/scan/folders
outputs_data=/path/to/your/output/folders

wget https://huggingface.co/qicq1c/DiffTumor/resolve/main/difftumor_final.sif
SINGULARITYENV_CUDA_VISIBLE_DEVICES=0 singularity run --nv -B $inputs_data:/workspace/inputs -B $outputs_data:/workspace/outputs difftumor_final.sif

Citation

@inproceedings{chen2024towards,
  title={Towards generalizable tumor synthesis},
  author={Chen, Qi and Chen, Xiaoxi and Song, Haorui and Xiong, Zhiwei and Yuille, Alan and Wei, Chen and Zhou, Zongwei},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={11147--11158},
  year={2024}
}

Acknowledgement

This work was supported by the Lustgarten Foundation for Pancreatic Cancer Research and the McGovern Foundation. The codebase is modified from NVIDIA MONAI. Paper content is covered by patents pending.

About

[CVPR 2024] Generalizable Tumor Synthesis - Realistic Synthetic Tumors in Liver, Pancreas, and Kidney

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 95.2%
  • Shell 4.8%