-
Notifications
You must be signed in to change notification settings - Fork 157
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[onert/odc] Auto-compilation. Tests (#14435)
This PR introduces tests for `odc:auto-compilation`. For [Issue]( #13288). From [Draft](#13530). ONE-DCO-1.0-Signed-off-by: Evgenii Maltsev [email protected]
- Loading branch information
Showing
3 changed files
with
213 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,209 @@ | ||
/* | ||
* Copyright (c) 2024 Samsung Electronics Co., Ltd. All Rights Reserved | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#include <gtest/gtest.h> | ||
#include <gmock/gmock.h> | ||
|
||
#include <nnfw_internal.h> | ||
|
||
#include "common.h" | ||
#include "fixtures.h" | ||
#include "CircleGen.h" | ||
#include "GenModelTest.h" | ||
#include "NNPackages.h" | ||
|
||
#include <chrono> | ||
using ::testing::FloatNear; | ||
using ::testing::Matcher; | ||
|
||
Matcher<std::vector<float>> FloatArrayNear(const std::vector<float> &values, float max_abs_error) | ||
{ | ||
std::vector<Matcher<float>> matchers; | ||
matchers.reserve(values.size()); | ||
for (const float v : values) | ||
{ | ||
matchers.emplace_back(FloatNear(v, max_abs_error)); | ||
} | ||
return ElementsAreArray(matchers); | ||
} | ||
|
||
const std::string model_name = "conv2d"; | ||
|
||
std::vector<std::vector<float>> input_tensors = { | ||
{1, 2, 3, 4, 5.5, 6.7, 1, 2, 3, 4, 5.5, 6.7, 1, 2, 3, 4, 5.5, 6.7}, | ||
{7.1, 8, 9, 9.4, 1.2, 12.7, 1, 2, 3, 4, 5.5, 6.7, 7.1, 8, 9, 5.2, 3.2, 2.7}, | ||
{6.3, 2, 3.2, 4.7, 5.5, 3.7, 1, 2, 3.5, 4.2, 5.5, 6.7, 1.7, 2.2, 3.5, 4.5, 5.5, 6.7}, | ||
{8.4, 2.2, 3.7, 4.4, 5.5, 6.7, 1.2, 2.6, 3.3, 4.7, 5.5, 6.7, 1.3, 2, 3.2, 4.4, 5.5, 6.7}, | ||
{1.2, 2.6, 3.3, 4, 5.5, 6.7, 1, 2, 3.4, 4, 5.5, 6.7, 1, 2.6, 3, 4, 5.5, 6.7}}; | ||
|
||
// Test for running a model with auto compilation | ||
TEST(TestOdcAutoCompilation, AutoCompilation_test) | ||
{ | ||
EXPECT_TRUE(input_tensors.size()); | ||
|
||
auto model_path = NNPackages::get().getModelAbsolutePath(model_name.c_str()); | ||
|
||
// setup session and load model | ||
nnfw_session *session = nullptr; | ||
nnfw_create_session(&session); | ||
|
||
nnfw_load_model_from_modelfile(session, (model_path + ".circle").c_str()); | ||
nnfw_set_available_backends(session, "cpu"); | ||
nnfw_prepare(session); | ||
|
||
// Delete minmax file | ||
nnfw_odc_delete_minmax_file(session); | ||
|
||
std::string compile_model_extension = "tvn"; | ||
|
||
// Delete previuos quantized and compiled model | ||
std::string quantized_model_name = model_path + std::string(".q.circle"); | ||
std::string compiled_model_name = model_path + std::string(".") + compile_model_extension; | ||
std::remove(quantized_model_name.c_str()); | ||
std::remove(compiled_model_name.c_str()); | ||
|
||
// setup ODC parameters | ||
nnfw_set_quantized_model_path(session, quantized_model_name.c_str()); | ||
nnfw_set_quantization_type(session, NNFW_QUANTIZE_TYPE::NNFW_QUANTIZE_TYPE_U8_ASYM); | ||
|
||
nnfw_set_codegen_model_path(session, compiled_model_name.c_str()); | ||
|
||
const int RUNS_COUNT_FOR_QUANTIZATION = input_tensors.size(); | ||
nnfw_set_odc_param_minmax_records_count(session, RUNS_COUNT_FOR_QUANTIZATION); | ||
|
||
std::vector<std::vector<float>> float_model_output_tensors; | ||
std::vector<std::vector<float>> quantized_model_output_tensors; | ||
|
||
// Run FLOAT MODEL | ||
// prepare input and output data and run model | ||
for (size_t idx = 0; idx < RUNS_COUNT_FOR_QUANTIZATION; idx++) | ||
{ | ||
|
||
// prepare input | ||
nnfw_tensorinfo ti; | ||
|
||
nnfw_input_tensorinfo(session, 0, &ti); | ||
nnfw_set_input(session, 0, ti.dtype, input_tensors[idx].data(), | ||
sizeof(float) * input_tensors[idx].size()); | ||
|
||
// prepare output | ||
nnfw_output_tensorinfo(session, 0, &ti); | ||
uint32_t output_elements = 1; | ||
for (int32_t i = 0; i < ti.rank; ++i) | ||
output_elements *= ti.dims[i]; | ||
|
||
std::vector<float> output; | ||
output.resize(output_elements); | ||
nnfw_set_output(session, 0, ti.dtype, output.data(), sizeof(float) * output_elements); | ||
|
||
// run model | ||
NNFW_STATUS status = | ||
nnfw_run_with_auto_compilation(session, (compile_model_extension + "-gen").c_str(), | ||
NNFW_CODEGEN_PREF::NNFW_CODEGEN_PREF_DEFAULT); | ||
EXPECT_TRUE(status == NNFW_STATUS_NO_ERROR); | ||
|
||
float_model_output_tensors.push_back(output); | ||
} | ||
|
||
// Run COMPILED or QUANTIZED MODEL | ||
for (size_t idx = 0; idx < RUNS_COUNT_FOR_QUANTIZATION; idx++) | ||
{ | ||
|
||
// prepare input | ||
nnfw_tensorinfo ti; | ||
|
||
nnfw_input_tensorinfo(session, 0, &ti); | ||
nnfw_set_input(session, 0, ti.dtype, input_tensors[idx].data(), | ||
sizeof(float) * input_tensors[idx].size()); | ||
|
||
// prepare output | ||
nnfw_output_tensorinfo(session, 0, &ti); | ||
uint32_t output_elements = 1; | ||
for (int32_t i = 0; i < ti.rank; ++i) | ||
output_elements *= ti.dims[i]; | ||
|
||
std::vector<float> output; | ||
output.resize(output_elements); | ||
nnfw_set_output(session, 0, ti.dtype, output.data(), sizeof(float) * output_elements); | ||
|
||
// run quantized model | ||
NNFW_STATUS status = | ||
nnfw_run_with_auto_compilation(session, (compile_model_extension + "-gen").c_str(), | ||
NNFW_CODEGEN_PREF::NNFW_CODEGEN_PREF_DEFAULT); | ||
EXPECT_TRUE(status == NNFW_STATUS_NO_ERROR); | ||
|
||
quantized_model_output_tensors.push_back(output); | ||
} | ||
|
||
// results comparison | ||
for (size_t idx = 0; idx < quantized_model_output_tensors.size(); idx++) | ||
{ | ||
EXPECT_THAT(float_model_output_tensors[idx], | ||
FloatArrayNear(quantized_model_output_tensors[idx], 0.1f)); | ||
} | ||
|
||
nnfw_close_session(session); | ||
SUCCEED(); | ||
} | ||
|
||
// Neg test for auto compilation | ||
TEST(TestOdcAutoCompilation, neg_autoCompilation_no_export_path) | ||
{ | ||
|
||
EXPECT_TRUE(input_tensors.size()); | ||
|
||
auto model_path = NNPackages::get().getModelAbsolutePath(model_name.c_str()); | ||
|
||
// setup session and load model | ||
nnfw_session *session = nullptr; | ||
nnfw_create_session(&session); | ||
|
||
nnfw_load_model_from_modelfile(session, (model_path + ".circle").c_str()); | ||
nnfw_set_available_backends(session, "cpu"); | ||
nnfw_prepare(session); | ||
|
||
// Delete minmax file | ||
nnfw_odc_delete_minmax_file(session); | ||
|
||
const int RUNS_COUNT_FOR_QUANTIZATION = 1; | ||
nnfw_set_odc_param_minmax_records_count(session, RUNS_COUNT_FOR_QUANTIZATION); | ||
|
||
// Run FLOAT MODEL | ||
// prepare input | ||
nnfw_tensorinfo ti; | ||
|
||
nnfw_input_tensorinfo(session, 0, &ti); | ||
nnfw_set_input(session, 0, ti.dtype, input_tensors[0].data(), | ||
sizeof(float) * input_tensors[0].size()); | ||
|
||
// prepare output | ||
nnfw_output_tensorinfo(session, 0, &ti); | ||
uint32_t output_elements = 1; | ||
for (int32_t i = 0; i < ti.rank; ++i) | ||
output_elements *= ti.dims[i]; | ||
|
||
std::vector<float> output; | ||
output.resize(output_elements); | ||
nnfw_set_output(session, 0, ti.dtype, output.data(), sizeof(float) * output_elements); | ||
|
||
// run model | ||
NNFW_STATUS status = | ||
nnfw_run_with_auto_compilation(session, "", NNFW_CODEGEN_PREF::NNFW_CODEGEN_PREF_DEFAULT); | ||
ASSERT_EQ(status, NNFW_STATUS_INVALID_STATE); | ||
|
||
nnfw_close_session(session); | ||
SUCCEED(); | ||
} |